Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
J Med Internet Res ; 23(10): e31400, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1463405


BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.

COVID-19 , Pandemics , Adult , Aged , Female , Hospitalization , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2
JMIR Public Health Surveill ; 7(9): e29310, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1323049


BACKGROUND: As the world faced the pandemic caused by the novel coronavirus disease 2019 (COVID-19), medical professionals, technologists, community leaders, and policy makers sought to understand how best to leverage data for public health surveillance and community education. With this complex public health problem, North Carolinians relied on data from state, federal, and global health organizations to increase their understanding of the pandemic and guide decision-making. OBJECTIVE: We aimed to describe the role that stakeholders involved in COVID-19-related data played in managing the pandemic in North Carolina. The study investigated the processes used by organizations throughout the state in using, collecting, and reporting COVID-19 data. METHODS: We used an exploratory qualitative study design to investigate North Carolina's COVID-19 data collection efforts. To better understand these processes, key informant interviews were conducted with employees from organizations that collected COVID-19 data across the state. We developed an interview guide, and open-ended semistructured interviews were conducted during the period from June through November 2020. Interviews lasted between 30 and 45 minutes and were conducted by data scientists by videoconference. Data were subsequently analyzed using qualitative data analysis software. RESULTS: Results indicated that electronic health records were primary sources of COVID-19 data. Often, data were also used to create dashboards to inform the public or other health professionals, to aid in decision-making, or for reporting purposes. Cross-sector collaboration was cited as a major success. Consistency among metrics and data definitions, data collection processes, and contact tracing were cited as challenges. CONCLUSIONS: Findings suggest that, during future outbreaks, organizations across regions could benefit from data centralization and data governance. Data should be publicly accessible and in a user-friendly format. Additionally, established cross-sector collaboration networks are demonstrably beneficial for public health professionals across the state as these established relationships facilitate a rapid response to evolving public health challenges.

COVID-19/epidemiology , Data Analysis , Data Collection , Pandemics/prevention & control , Stakeholder Participation/psychology , Female , Health Education , Humans , Male , North Carolina/epidemiology , Public Health Surveillance , Qualitative Research