ABSTRACT
Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , CD8-Positive T-Lymphocytes , Seroconversion , NucleocapsidABSTRACT
Dysregulation of the myeloid cell compartment is a feature of severe disease in hospitalized COVID-19 patients. Here, we investigated the response of circulating dendritic cell (DC) and monocyte subpopulations in SARS-CoV-2 infected outpatients with mild disease and compared it to the response of healthy individuals to yellow fever vaccine virus YF17D as a model of a well-coordinated response to viral infection. In SARS-CoV-2-infected outpatients circulating DCs were persistently reduced for several weeks whereas after YF17D vaccination DC numbers were decreased temporarily and rapidly replenished by increased proliferation until 14 days after vaccination. The majority of COVID-19 outpatients showed high expression of CD86 and PD-L1 in monocytes and DCs early on, resembling the dynamic after YF17D vaccination. In a subgroup of patients low CD86 and high PD-L1 expression were detected in monocytes and DCs coinciding with symptoms, higher age and lower lymphocyte counts. This phenotype was similar to that observed in severely ill COVID-19 patients, but less pronounced. Thus, prolonged reduction and dysregulated activation of blood DCs and monocytes were seen in a subgroup of symptomatic non-hospitalized COVID-19 patients while a transient coordinated activation was characteristic for the majority of patients with mild COVID-19 and the response to YF17D vaccination. This article is protected by copyright. All rights reserved.
ABSTRACT
SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , NucleocapsidABSTRACT
The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.
Subject(s)
COVID-19/immunology , Adult , Aged , Aged, 80 and over , Ambulatory Care , Cytokines/blood , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Interferons/immunology , Killer Cells, Natural/immunology , Longitudinal Studies , Male , Middle Aged , Monocytes/immunology , Nasopharynx/immunology , Nasopharynx/virology , SARS-CoV-2/physiology , T-Lymphocytes/immunologyABSTRACT
Risk factors for disease progression and severity of SARS-CoV-2 infections require an understanding of acute and long-term virological and immunological dynamics. Fifty-one RT-PCR positive COVID-19 outpatients were recruited between May and December 2020 in Munich, Germany, and followed up at multiple defined timepoints for up to one year. RT-PCR and viral culture were performed and seroresponses measured. Participants were classified applying the WHO clinical progression scale. Short symptom to test time (median 5.0 days; p = 0.0016) and high viral loads (VL; median maximum VL: 3â108 copies/mL; p = 0.0015) were indicative for viral culture positivity. Participants with WHO grade 3 at baseline had significantly higher VLs compared to those with WHO 1 and 2 (p = 0.01). VLs dropped fast within 1 week of symptom onset. Maximum VLs were positively correlated with the magnitude of Ro-N-Ig seroresponse (p = 0.022). Our results describe the dynamics of VLs and antibodies to SARS-CoV-2 in mild to moderate cases that can support public health measures during the ongoing global pandemic.
Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/physiology , Viral Load , Adolescent , Adult , COVID-19/complications , Child , Cohort Studies , Host-Pathogen Interactions , Humans , Longitudinal Studies , Middle Aged , Outpatients , Pandemics , Serologic Tests/methods , Symptom Assessment , Young AdultABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.
Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cross Reactions , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antigenic Drift and Shift , COVID-19/virology , Female , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolismABSTRACT
A number of seroassays are available for SARS-CoV-2 testing; yet, head-to-head evaluations of different testing principles are limited, especially using raw values rather than categorical data. In addition, identifying correlates of protection is of utmost importance, and comparisons of available testing systems with functional assays, such as direct viral neutralisation, are needed.We analysed 6658 samples consisting of true-positives (n=193), true-negatives (n=1091), and specimens of unknown status (n=5374). For primary testing, we used Euroimmun-Anti-SARS-CoV-2-ELISA-IgA/IgG and Roche-Elecsys-Anti-SARS-CoV-2. Subsequently virus-neutralisation, GeneScriptcPass, VIRAMED-SARS-CoV-2-ViraChip, and Mikrogen-recomLine-SARS-CoV-2-IgG were applied for confirmatory testing. Statistical modelling generated optimised assay cut-off thresholds. Sensitivity of Euroimmun-anti-S1-IgA was 64.8%, specificity 93.3% (manufacturer's cut-off); for Euroimmun-anti-S1-IgG, sensitivity was 77.2/79.8% (manufacturer's/optimised cut-offs), specificity 98.0/97.8%; Roche-anti-N sensitivity was 85.5/88.6%, specificity 99.8/99.7%. In true-positives, mean and median Euroimmun-anti-S1-IgA and -IgG titres decreased 30/90 days after RT-PCR-positivity, Roche-anti-N titres decreased significantly later. Virus-neutralisation was 80.6% sensitive, 100.0% specific (≥1:5 dilution). Neutralisation surrogate tests (GeneScriptcPass, Mikrogen-recomLine-RBD) were >94.9% sensitive and >98.1% specific. Optimised cut-offs improved test performances of several tests. Confirmatory testing with virus-neutralisation might be complemented with GeneScriptcPassTM or recomLine-RBD for certain applications. Head-to-head comparisons given here aim to contribute to the refinement of testing strategies for individual and public health use.
Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Neutralization Tests/methods , SARS-CoV-2/immunology , COVID-19 Nucleic Acid Testing , Cohort Studies , HumansABSTRACT
BACKGROUND: In the 2nd year of the COVID-19 pandemic, knowledge about the dynamics of the infection in the general population is still limited. Such information is essential for health planners, as many of those infected show no or only mild symptoms and thus, escape the surveillance system. We therefore aimed to describe the course of the pandemic in the Munich general population living in private households from April 2020 to January 2021. METHODS: The KoCo19 baseline study took place from April to June 2020 including 5313 participants (age 14 years and above). From November 2020 to January 2021, we could again measure SARS-CoV-2 antibody status in 4433 of the baseline participants (response 83%). Participants were offered a self-sampling kit to take a capillary blood sample (dry blood spot; DBS). Blood was analysed using the Elecsys® Anti-SARS-CoV-2 assay (Roche). Questionnaire information on socio-demographics and potential risk factors assessed at baseline was available for all participants. In addition, follow-up information on health-risk taking behaviour and number of personal contacts outside the household (N = 2768) as well as leisure time activities (N = 1263) were collected in summer 2020. RESULTS: Weighted and adjusted (for specificity and sensitivity) SARS-CoV-2 sero-prevalence at follow-up was 3.6% (95% CI 2.9-4.3%) as compared to 1.8% (95% CI 1.3-3.4%) at baseline. 91% of those tested positive at baseline were also antibody-positive at follow-up. While sero-prevalence increased from early November 2020 to January 2021, no indication of geospatial clustering across the city of Munich was found, although cases clustered within households. Taking baseline result and time to follow-up into account, men and participants in the age group 20-34 years were at the highest risk of sero-positivity. In the sensitivity analyses, differences in health-risk taking behaviour, number of personal contacts and leisure time activities partly explained these differences. CONCLUSION: The number of citizens in Munich with SARS-CoV-2 antibodies was still below 5% during the 2nd wave of the pandemic. Antibodies remained present in the majority of SARS-CoV-2 sero-positive baseline participants. Besides age and sex, potentially confounded by differences in behaviour, no major risk factors could be identified. Non-pharmaceutical public health measures are thus still important.
Subject(s)
COVID-19 , Pandemics , Follow-Up Studies , Germany/epidemiology , Humans , Infant, Newborn , Male , SARS-CoV-2ABSTRACT
A breakthrough infection occurred in a fully Comirnaty (BNT162b2) vaccinated healthcare worker with high levels of neutralising antibodies with the SARS-CoV-2 B.1.351 (Beta) variant in February 2021. The infection was subsequently transmitted to their unvaccinated spouse. Sequencing revealed an identical virus in both spouses, with a match of all nine single nucleotide polymorphisms typical for B.1.351. To the best of our knowledge, no transmission of any variant of SARS-CoV-2 from a fully vaccinated person has been described before.
Subject(s)
COVID-19 , Vaccines , BNT162 Vaccine , COVID-19 Vaccines , Germany/epidemiology , Humans , SARS-CoV-2ABSTRACT
BACKGROUND: Since 2020 SARS-CoV-2 spreads pandemically, infecting more than 119 million people, causing >2·6 million fatalities. Symptoms of SARS-CoV-2 infection vary greatly, ranging from asymptomatic to fatal. Different populations react differently to the disease, making it very hard to track the spread of the infection in a population. Measuring specific anti-SARS-CoV-2 antibodies is an important tool to assess the spread of the infection or successful vaccinations. To achieve sufficient sample numbers, alternatives to venous blood sampling are needed not requiring medical personnel or cold-chains. Dried-blood-spots (DBS) on filter-cards have been used for different studies, but not routinely for serology. METHODS: We developed a semi-automated protocol using self-sampled DBS for SARS-CoV-2 serology. It was validated in a cohort of matched DBS and venous-blood samples (n = 1710). Feasibility is demonstrated with two large serosurveys with 10247 company employees and a population cohort of 4465 participants. FINDINGS: Sensitivity and specificity reached 99·20% and 98·65%, respectively. Providing written instructions and video tutorials, 99·87% (4465/4471) of the unsupervised home sampling DBS cards could be analysed. INTERPRETATION: DBS-sampling is a valid and highly reliable tool for large scale serosurveys. We demonstrate feasibility and accuracy with a large validation cohort including unsupervised home sampling. This protocol might be of big importance for surveillance in resource-limited settings, providing low-cost highly accurate serology data. FUNDING: Provided by Bavarian State Ministry of Science and the Arts, LMU University-Hospital; Helmholtz-Centre-Munich, German Ministry for Education and Research (project01KI20271); University of Bonn; University of Bielefeld; the Medical Biodefense Research Program of Bundeswehr-Medical-Service; Euroimmun, RocheDiagnostics provided discounted kits and machines.
Subject(s)
Antibodies, Viral/immunology , Biological Assay/methods , COVID-19 Serological Testing/methods , COVID-19/blood , COVID-19/immunology , Dried Blood Spot Testing/methods , SARS-CoV-2/immunology , Asymptomatic Infections , Cohort Studies , Humans , Longitudinal Studies , Sensitivity and Specificity , Specimen Handling/methods , Vaccination/methodsABSTRACT
From an infectious disease perspective, there have been outstanding findings since January 2020 far beyond the knowledge gained about SARS-CoV, which hopefully will help us to manage future pandemics. Positive highlights include the increased public awareness of infectious disease epidemiology, the increase in immunological knowledge, and the successful use of existing vaccine development platforms and technologies. This article presents a personal selection of interesting developments in recent months.
Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Infectious Disease Medicine , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/prevention & control , Humans , Interferon Type I/blood , Post-Acute COVID-19 SyndromeABSTRACT
Background: Adaptive immune responses to structural proteins of the virion play a crucial role in protection against coronavirus disease 2019 (COVID-19). We therefore studied T cell responses against multiple SARS-CoV-2 structural proteins in a large cohort using a simple, fast, and high-throughput approach. Methods: An automated interferon gamma release assay (IGRA) for the Nucleocapsid (NC)-, Membrane (M)-, Spike-C-terminus (SCT)-, and N-terminus-protein (SNT)-specific T cell responses was performed using fresh whole blood from study subjects with convalescent, confirmed COVID-19 (n = 177, more than 200 days post infection), exposed household members (n = 145), and unexposed controls (n = 85). SARS-CoV-2-specific antibodies were assessed using Elecsys® Anti-SARS-CoV-2 (Ro-N-Ig) and Anti-SARS-CoV-2-ELISA (IgG) (EI-S1-IgG). Results: 156 of 177 (88%) previously PCR confirmed cases were still positive by Ro-N-Ig more than 200 days after infection. In T cells, most frequently the M-protein was targeted by 88% seropositive, PCR confirmed cases, followed by SCT (85%), NC (82%), and SNT (73%), whereas each of these antigens was recognized by less than 14% of non-exposed control subjects. Broad targeting of these structural virion proteins was characteristic of convalescent SARS-CoV-2 infection; 68% of all seropositive individuals targeted all four tested antigens. Indeed, anti-NC antibody titer correlated loosely, but significantly with the magnitude and breadth of the SARS-CoV-2-specific T cell response. Age, sex, and body mass index were comparable between the different groups. Conclusion: SARS-CoV-2 seropositivity correlates with broad T cell reactivity of the structural virus proteins at 200 days after infection and beyond. The SARS-CoV-2-IGRA can facilitate large scale determination of SARS-CoV-2-specific T cell responses with high accuracy against multiple targets.
Subject(s)
COVID-19/immunology , Interferon-gamma/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Viral Structural Proteins/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Interferon-gamma Release Tests , Male , Middle Aged , Young AdultABSTRACT
Given the large number of mild or asymptomatic SARS-CoV-2 cases, only population-based studies can provide reliable estimates of the magnitude of the pandemic. We therefore aimed to assess the sero-prevalence of SARS-CoV-2 in the Munich general population after the first wave of the pandemic. For this purpose, we drew a representative sample of 2994 private households and invited household members 14 years and older to complete questionnaires and to provide blood samples. SARS-CoV-2 seropositivity was defined as Roche N pan-Ig ≥ 0.4218. We adjusted the prevalence for the sampling design, sensitivity, and specificity. We investigated risk factors for SARS-CoV-2 seropositivity and geospatial transmission patterns by generalized linear mixed models and permutation tests. Seropositivity for SARS-CoV-2-specific antibodies was 1.82% (95% confidence interval (CI) 1.28-2.37%) as compared to 0.46% PCR-positive cases officially registered in Munich. Loss of the sense of smell or taste was associated with seropositivity (odds ratio (OR) 47.4; 95% CI 7.2-307.0) and infections clustered within households. By this first population-based study on SARS-CoV-2 prevalence in a large German municipality not affected by a superspreading event, we could show that at least one in four cases in private households was reported and known to the health authorities. These results will help authorities to estimate the true burden of disease in the population and to take evidence-based decisions on public health measures.
Subject(s)
COVID-19 , Coronavirus Infections , Humans , Prevalence , Risk Factors , SARS-CoV-2ABSTRACT
An amendment to this paper has been published and can be accessed via the original article.
ABSTRACT
The control and management of infection with the novel SARS-CoV-2 virus requires multidisciplinary work between specialists on all levels. This article aims to provide an overview of the current knowledge of COVID-19 from the view of infectious diseases physicians including all the uncertainties of our understanding of the pathogenesis and immunity.
Subject(s)
Betacoronavirus , Coronavirus Infections , Infectious Disease Medicine , Pandemics , Pneumonia, Viral , COVID-19 , Humans , Physicians , SARS-CoV-2ABSTRACT
BACKGROUND: Due to the SARS-CoV-2 pandemic, public health interventions have been introduced globally in order to prevent the spread of the virus and avoid the overload of health care systems, especially for the most severely affected patients. Scientific studies to date have focused primarily on describing the clinical course of patients, identifying treatment options and developing vaccines. In Germany, as in many other regions, current tests for SARS-CoV2 are not conducted on a representative basis and in a longitudinal design. Furthermore, knowledge about the immune status of the population is lacking. Nonetheless, these data are needed to understand the dynamics of the pandemic and hence to appropriately design and evaluate interventions. For this purpose, we recently started a prospective population-based cohort in Munich, Germany, with the aim to develop a better understanding of the state and dynamics of the pandemic. METHODS: In 100 out of 755 randomly selected constituencies, 3000 Munich households are identified via random route and offered enrollment into the study. All household members are asked to complete a baseline questionnaire and subjects ≥14 years of age are asked to provide a venous blood sample of ≤3 ml for the determination of SARS-CoV-2 IgG/IgA status. The residual plasma and the blood pellet are preserved for later genetic and molecular biological investigations. For twelve months, each household member is asked to keep a diary of daily symptoms, whereabouts and contacts via WebApp. If symptoms suggestive for COVID-19 are reported, family members, including children < 14 years, are offered a pharyngeal swab taken at the Division of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, for molecular testing for SARS-CoV-2. In case of severe symptoms, participants will be transferred to a Munich hospital. For one year, the study teams re-visits the households for blood sampling every six weeks. DISCUSSION: With the planned study we will establish a reliable epidemiological tool to improve the understanding of the spread of SARS-CoV-2 and to better assess the effectiveness of public health measures as well as their socio-economic effects. This will support policy makers in managing the epidemic based on scientific evidence.