Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 11(1): 12213, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1387476

ABSTRACT

As we enter a chronic phase of the SARS-CoV-2 pandemic, with uncontrolled infection rates in many places, relative regional susceptibilities are a critical unknown for policy planning. Tests for SARS-CoV-2 infection or antibodies are indicative but unreliable measures of exposure. Here instead, for four highly-affected countries, we determine population susceptibilities by directly comparing country-wide observed epidemic dynamics data with that of their main metropolitan regions. We find significant susceptibility reductions in the metropolitan regions as a result of earlier seeding, with a relatively longer phase of exponential growth before the introduction of public health interventions. During the post-growth phase, the lower susceptibility of these regions contributed to the decline in cases, independent of intervention effects. Forward projections indicate that non-metropolitan regions will be more affected during recurrent epidemic waves compared with the initially heavier-hit metropolitan regions. Our findings have consequences for disease forecasts and resource utilisation.


Subject(s)
COVID-19/epidemiology , Pandemics/statistics & numerical data , COVID-19/mortality , COVID-19/prevention & control , Cities/epidemiology , Disease Susceptibility , Humans , Models, Statistical , Pandemics/prevention & control
2.
Ann Am Thorac Soc ; 17(7): 879-891, 2020 07.
Article in English | MEDLINE | ID: covidwho-679536

ABSTRACT

There is broad interest in improved methods to generate robust evidence regarding best practice, especially in settings where patient conditions are heterogenous and require multiple concomitant therapies. Here, we present the rationale and design of a large, international trial that combines features of adaptive platform trials with pragmatic point-of-care trials to determine best treatment strategies for patients admitted to an intensive care unit with severe community-acquired pneumonia. The trial uses a novel design, entitled "a randomized embedded multifactorial adaptive platform." The design has five key features: 1) randomization, allowing robust causal inference; 2) embedding of study procedures into routine care processes, facilitating enrollment, trial efficiency, and generalizability; 3) a multifactorial statistical model comparing multiple interventions across multiple patient subgroups; 4) response-adaptive randomization with preferential assignment to those interventions that appear most favorable; and 5) a platform structured to permit continuous, potentially perpetual enrollment beyond the evaluation of the initial treatments. The trial randomizes patients to multiple interventions within four treatment domains: antibiotics, antiviral therapy for influenza, host immunomodulation with extended macrolide therapy, and alternative corticosteroid regimens, representing 240 treatment regimens. The trial generates estimates of superiority, inferiority, and equivalence between regimens on the primary outcome of 90-day mortality, stratified by presence or absence of concomitant shock and proven or suspected influenza infection. The trial will also compare ventilatory and oxygenation strategies, and has capacity to address additional questions rapidly during pandemic respiratory infections. As of January 2020, REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) was approved and enrolling patients in 52 intensive care units in 13 countries on 3 continents. In February, it transitioned into pandemic mode with several design adaptations for coronavirus disease 2019. Lessons learned from the design and conduct of this trial should aid in dissemination of similar platform initiatives in other disease areas.Clinical trial registered with www.clinicaltrials.gov (NCT02735707).


Subject(s)
Community-Acquired Infections/therapy , Coronavirus Infections/therapy , Influenza, Human/therapy , Pneumonia, Viral/therapy , Pneumonia/therapy , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , COVID-19 , Evidence-Based Medicine , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2
3.
Aust Crit Care ; 34(2): 123-131, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-837401

ABSTRACT

BACKGROUND: Pandemics and the large-scale outbreak of infectious disease can significantly impact morbidity and mortality worldwide. The impact on intensive care resources can be significant and often require modification of service delivery, a key element which includes rapid expansion of the critical care workforce. Pandemics are also unpredictable, which necessitates rapid decision-making and action which, in the lack of experience and guidance, may be extremely challenging. Recognising the potential strain on intensive care units (ICUs), particularly on staffing, a working group was formed for the purpose of developing recommendations to support decision-making during rapid service expansion. METHODS: The Critical Care Pandemic Staffing Working Party (n = 21), representing nursing, allied health, and medical disciplines, has used a modified consensus approach to provide recommendations to inform multidisciplinary workforce capacity expansion planning in critical care. RESULTS: A total of 60 recommendations have been proposed which reflect general recommendations as well as those specific to maintaining the critical care workforce, expanding the critical care workforce, rostering and allocation of the critical care workforce, nurse-specific recommendations for staffing the ICU, education support and training during ICU surge situations, workforce support, models of care, and de-escalation. CONCLUSION: These recommendations are provided with the intent that they be used to guide interdisciplinary decision-making, and we suggest that careful consideration is given to the local context to determine which recommendations are most appropriate to implement and how they are prioritised. Ongoing evaluation of recommendation implementation and impact will be necessary, particularly in rapidly changing clinical contexts.


Subject(s)
COVID-19/epidemiology , Critical Care/organization & administration , Health Workforce/organization & administration , Personnel Staffing and Scheduling/organization & administration , Australia/epidemiology , Humans , Pandemics , SARS-CoV-2
4.
JAMA ; 324(13): 1317-1329, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739603

ABSTRACT

Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Coronavirus Infections/drug therapy , Hydrocortisone/administration & dosage , Pneumonia, Viral/drug therapy , Respiration, Artificial/statistics & numerical data , Adrenal Cortex Hormones/therapeutic use , Adult , Anti-Inflammatory Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Early Termination of Clinical Trials , Female , Humans , Hydrocortisone/adverse effects , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , SARS-CoV-2 , Shock/drug therapy , Shock/etiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL