Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Am J Cardiovasc Dis ; 12(4): 153-169, 2022.
Article in English | MEDLINE | ID: covidwho-2045926


In December 2019, an unprecedented outbreak of the novel coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) began to spread internationally, now impacting more than 293,750,692 patients with 5,454,131 deaths globally as of January 5, 2022. COVID-19 is highly pathogenic and contagious which has caused a large-scale epidemic impacting more deaths than the severe acute respiratory syndrome (SARS) epidemic in 2002-2003 or the Middle East respiratory syndrome (MERS) epidemic in 2012-2013. Although COVID-19 symptoms are mild in most people, in those with pre-existing comorbidities there is an increased risk of progression to severe disease and death. In an attempt to mitigate this pandemic, urgent public health measures including quarantining exposed individuals and social distancing have been implemented in most states, while some states have even started the process of re-opening after considering both the economic and public health consequences of social distancing measures. While prevention is crucial, both novel agents and medications already in use with other indications are being investigated in clinical trials for patients with COVID-19. The collaboration between healthcare providers, health systems, patients, private sectors, and local and national governments is needed to protect both healthcare providers and patients to ultimately overcome this pandemic. The purpose of this review is to summarize the peer-reviewed and preprint literature on the epidemiology, transmission, clinical presentation, and available therapies as well as to propose a preventive strategy to overcome the present global pandemic.

JAMA Netw Open ; 4(2): e210369, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1084243


Importance: There is limited evidence regarding early treatment of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to mitigate symptom progression. Objective: To examine whether high-dose zinc and/or high-dose ascorbic acid reduce the severity or duration of symptoms compared with usual care among ambulatory patients with SARS-CoV-2 infection. Design, Setting, and Participants: This multicenter, single health system randomized clinical factorial open-label trial enrolled 214 adult patients with a diagnosis of SARS-CoV-2 infection confirmed with a polymerase chain reaction assay who received outpatient care in sites in Ohio and Florida. The trial was conducted from April 27, 2020, to October 14, 2020. Intervention: Patients were randomized in a 1:1:1:1 allocation ratio to receive either 10 days of zinc gluconate (50 mg), ascorbic acid (8000 mg), both agents, or standard of care. Outcomes: The primary end point was the number of days required to reach a 50% reduction in symptoms, including severity of fever, cough, shortness of breath, and fatigue (rated on a 4-point scale for each symptom). Secondary end points included days required to reach a total symptom severity score of 0, cumulative severity score at day 5, hospitalizations, deaths, adjunctive prescribed medications, and adverse effects of the study supplements. Results: A total of 214 patients were randomized, with a mean (SD) age of 45.2 (14.6) years and 132 (61.7%) women. The study was stopped for a low conditional power for benefit with no significant difference among the 4 groups for the primary end point. Patients who received usual care without supplementation achieved a 50% reduction in symptoms at a mean (SD) of 6.7 (4.4) days compared with 5.5 (3.7) days for the ascorbic acid group, 5.9 (4.9) days for the zinc gluconate group, and 5.5 (3.4) days for the group receiving both (overall P = .45). There was no significant difference in secondary outcomes among the treatment groups. Conclusions and Relevance: In this randomized clinical trial of ambulatory patients diagnosed with SARS-CoV-2 infection, treatment with high-dose zinc gluconate, ascorbic acid, or a combination of the 2 supplements did not significantly decrease the duration of symptoms compared with standard of care. Trial Registration: Identifier: NCT04342728.

Ascorbic Acid/therapeutic use , COVID-19 Drug Treatment , Dietary Supplements , Zinc/therapeutic use , Adult , Ambulatory Care , Antioxidants/therapeutic use , COVID-19/complications , Cough/drug therapy , Cough/etiology , Dyspnea/drug therapy , Dyspnea/etiology , Fatigue/drug therapy , Fatigue/etiology , Female , Fever/drug therapy , Fever/etiology , Gluconates/therapeutic use , Humans , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Standard of Care , Trace Elements/therapeutic use , Treatment Outcome
Am J Cardiovasc Dis ; 10(4): 479-489, 2020.
Article in English | MEDLINE | ID: covidwho-937997


In December 2019, an unprecedented outbreak of pneumonia cases associated with acute respiratory distress syndrome (ARDS) first occurred in Wuhan, Hubei Province, China. The disease, later named Coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), was caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), and on January 30, 2020, the WHO declared the outbreak of COVID-19 to be a public health emergency. COVID-19 is now a global pandemic impacting more than 43,438,043 patients with 1,158,596 deaths globally as of August 26th, 2020. COVID-19 is highly contagious and has caused more deaths than SARS in 2002-2003 or the Middle East Respiratory Syndrome (MERS) in 2012-2013 combined and represents an unprecedented human affliction not seen since the influenza pandemic of 1918. COVID-19 has been associated with several cardiac complications, including hypercoagulability, acute myocardial injury and myocarditis, arrhythmias, and acute coronary syndromes. Patients with pre-existing cardiovascular disease (CVD) are at the highest risk for myocardial injury and mortality among infected patients. The mechanism by which COVID-infected patients develop cardiac complications remains unclear, though it may be mediated by increased ACE-2 gene expression. Despite initial concerns, there is no evidence that angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy increases risk for myocardial injury among those infected with COVID-19. In the current report, we summarize the peer-reviewed and preprint literature on cardiovascular risks and complications associated with COVID-19, as well as provide insights into its pathogenesis and management.

Cardiovasc Diagn Ther ; 10(4): 912-914, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-792582