Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature communications ; 13(1):2460, 2022.
Article in English | EuropePMC | ID: covidwho-1825071

ABSTRACT

Infection or vaccination leads to the development of germinal centers (GC) where B cells evolve high affinity antigen receptors, eventually producing antibody-forming plasma cells or memory B cells. Here we follow the migratory pathways of B cells emerging from germinal centers (BEM) and find that many BEM cells migrate into the lymph node subcapsular sinus (SCS) guided by sphingosine-1-phosphate (S1P). From the SCS, BEM cells may exit the lymph node to enter distant tissues, while some BEM cells interact with and take up antigen from SCS macrophages, followed by CCL21-guided return towards the GC. Disruption of local CCL21 gradients inhibits the recycling of BEM cells and results in less efficient adaption to antigenic variation. Our findings thus suggest that the recycling of antigen variant-specific BEM cells and transport of antigen back to GC may support affinity maturation to antigenic drift.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318387

ABSTRACT

Potently neutralizing SARS-CoV-2 antibodies often target the receptor binding site (RBS) of spike protein but the variability of RBS epitopes hampers broad neutralization of different clades of coronaviruses and emerging drifted viruses. Here, we identified a human RBS antibody that potently neutralizes SARS-CoV and SARS-CoV-2 variants that belong to clade 1 SARS-related coronavirus. X-ray crystallography revealed coordinated recognition by the heavy chain to conserved sites and the light chain to RBS, allowing for the mimicry of ACE2 binding mode. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, and the activity was further enhanced by IgG3 switching. Eventually, the coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Furthermore, therapeutic treatment in a hamster model provided protection at low dosage. The structural basis for broadly neutralizing activity informs the design of broad spectrum of therapeutics and vaccines.Funding: This work was supported by Japan Agency for Medical Research and Development grant JP19fk0108111 (TH, YT), JP20fk0108298 (TK, TH, KM, YT), JP20am0101093 (KM), JP20ae0101047 (KM), JP20fk0108251 (HS), and JP20am0101124 (YK), by Ministry of Education, Culture, Sports, Science and Technology grant JPMXS0420100119 (KM) and 20H05773 (TH), by The Naito Foundation (TH), and by Joint Usage/Research Center program of Institute for Frontier Life and Medical Sciences, Kyoto University (KM).Conflict of Interest: AS is an employee of Shionogi & Co., Ltd. MO is a CEO, employee, and shareholder of Trans Chromosomics, Inc. These authors acknowledge a potential conflict of interest and attest that the work contained in this report is free of any bias that might be associated with the commercial goals of the company. TO, YA, MO, TH, KM, and YT declare that an intellectual property application has been filed using the data presented in this paper. The other authors declare that they have no competing interests.Ethical Approval: Animal procedures were approved by the Animal Ethics Committee of the National Institute of Infectious Diseases, Japan, and performed in accordance with the guidelines of the Institutional Animal Care and Use Committee. In vitro escape mutation screening experiments for SARSCoV-2 were performed at the Biosafety Level-3 facility of the Research Center for ZoonosisControl, Hokkaido University, and the National Institute of Infectious Diseases following the institutional guidelines.

3.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1467277

ABSTRACT

Adaptive immunity is a fundamental component in controlling COVID-19. In this process, follicular helper T (Tfh) cells are a subset of CD4+ T cells that mediate the production of protective antibodies; however, the SARS-CoV-2 epitopes activating Tfh cells are not well characterized. Here, we identified and crystallized TCRs of public circulating Tfh (cTfh) clonotypes that are expanded in patients who have recovered from mild symptoms. These public clonotypes recognized the SARS-CoV-2 spike (S) epitopes conserved across emerging variants. The epitope of the most prevalent cTfh clonotype, S864-882, was presented by multiple HLAs and activated T cells in most healthy donors, suggesting that this S region is a universal T cell epitope useful for booster antigen. SARS-CoV-2-specific public cTfh clonotypes also cross-reacted with specific commensal bacteria. In this study, we identified conserved SARS-CoV-2 S epitopes that activate public cTfh clonotypes associated with mild symptoms.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Antibodies, Viral/immunology , Female , HLA Antigens/immunology , Humans , Lymphocyte Activation , Male
4.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1462245

ABSTRACT

Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Polysaccharides/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Motifs , Animals , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Female , Humans , Male , Mice , Mice, Inbred BALB C , Polysaccharides/genetics , Protein Domains , SARS Virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1370548

ABSTRACT

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Animals , Betacoronavirus/immunology , Binding Sites, Antibody , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , Cricetinae , Humans , Immunoglobulin Class Switching , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL