Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Document Type
Language
Year range
1.
Curr Med Chem ; 2021 May 14.
Article in English | MEDLINE | ID: covidwho-1229117

ABSTRACT

Outbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARS-CoV-2) initiated in Wuhan city, China, in December 2019 which continued to spread internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutinin-mediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related-viral diseases, including COVID-19. It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at S1/S2 subunit interface in S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and available scope for the new drug discovery process targeting SARS-related virus entry into the host cell.

2.
Inform Med Unlocked ; 21: 100484, 2020.
Article in English | MEDLINE | ID: covidwho-1176754

ABSTRACT

In the year 2019, the potent zoonotic virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to rage globally, which resulted in the World Health Organization (WHO) declaring it as a pandemic on March 11th, 2020. Although extensive research is currently ongoing worldwide to understand the molecular mechanism and disease pathogenicity of SARS-CoV-2, there are still many nuances to elucidate. Therefore, developing an appropriate vaccine or therapeutic drug to combat coronavirus 2019 (COVID-19) is exceedingly challenging. Such scenarios require multifaceted approaches to identify suitable contenders for drugs against COVID-19. In this context, investigating natural compounds found in food, spices, and beverages can lead to the discovery of lead molecules that could be repurposed to treat COVID-19. Sixteen cucurbitacin analogues were investigated for activity against the SARS-CoV-2 main protease protein (Mpro), angiotensin-converting enzyme 2 (ACE2) binding receptor, nonstructural protein 12 (NSP12) RNA-dependent RNA polymerase (RdRp), NSP13 helicase, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway using several relevant tools and simulated screening methods. All key proteins were found to bind efficiently only with cucurbitacin G 2-glucoside and cucurbitacin H with the lowest global energy. Further, the absorption, distribution, metabolism, and excretion (ADME) of all the cucurbitacins were analysed to explore their drug profiles. Cucurbitacin G 2-glucoside and H showed the best hits and all the analogues showed no adverse properties that would diminish their drug-likeness abilities. The encouraging results of the current study may lay the foundation for future research and development of effective measures and preventive medications against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...