Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur J Neurol ; 28(11): 3826-3836, 2021 11.
Article in English | MEDLINE | ID: covidwho-1316884

ABSTRACT

Since the onset of the COVID-19 pandemic, a substantial proportion of COVID-19 patients had documented thrombotic complications and ischemic stroke. Several mechanisms related to immune-mediated thrombosis, the renin angiotensin system and the effect of SARS-CoV-2 in cardiac and brain tissue may contribute to the pathogenesis of ischemic stroke in patients with COVID-19. Simultaneously, significant strains on global healthcare delivery, including ischemic stroke management, have made treatment of stroke in the setting of COVID-19 particularly challenging. In this review, we summarize the current knowledge on epidemiology, clinical manifestation, and pathophysiology of ischemic stroke in patients with COVID-19 to bridge the gap from bench to bedside and clinical practice during the most challenging global health crisis of the last decades.


Subject(s)
Brain Ischemia , COVID-19 , Ischemic Stroke , Stroke , Brain Ischemia/complications , Brain Ischemia/epidemiology , Humans , Pandemics , SARS-CoV-2 , Stroke/epidemiology , Stroke/therapy
2.
Neurology ; 96(4): e575-e586, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1048797

ABSTRACT

OBJECTIVE: To determine the prevalence and associated mortality of well-defined neurologic diagnoses among patients with coronavirus disease 2019 (COVID-19), we prospectively followed hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients and recorded new neurologic disorders and hospital outcomes. METHODS: We conducted a prospective, multicenter, observational study of consecutive hospitalized adults in the New York City metropolitan area with laboratory-confirmed SARS-CoV-2 infection. The prevalence of new neurologic disorders (as diagnosed by a neurologist) was recorded and in-hospital mortality and discharge disposition were compared between patients with COVID-19 with and without neurologic disorders. RESULTS: Of 4,491 patients with COVID-19 hospitalized during the study timeframe, 606 (13.5%) developed a new neurologic disorder in a median of 2 days from COVID-19 symptom onset. The most common diagnoses were toxic/metabolic encephalopathy (6.8%), seizure (1.6%), stroke (1.9%), and hypoxic/ischemic injury (1.4%). No patient had meningitis/encephalitis or myelopathy/myelitis referable to SARS-CoV-2 infection and 18/18 CSF specimens were reverse transcriptase PCR negative for SARS-CoV-2. Patients with neurologic disorders were more often older, male, white, hypertensive, diabetic, intubated, and had higher sequential organ failure assessment (SOFA) scores (all p < 0.05). After adjusting for age, sex, SOFA scores, intubation, history, medical complications, medications, and comfort care status, patients with COVID-19 with neurologic disorders had increased risk of in-hospital mortality (hazard ratio [HR] 1.38, 95% confidence interval [CI] 1.17-1.62, p < 0.001) and decreased likelihood of discharge home (HR 0.72, 95% CI 0.63-0.85, p < 0.001). CONCLUSIONS: Neurologic disorders were detected in 13.5% of patients with COVID-19 and were associated with increased risk of in-hospital mortality and decreased likelihood of discharge home. Many observed neurologic disorders may be sequelae of severe systemic illness.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Hospitalization/statistics & numerical data , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Adult , Age Factors , Aged , Brain Diseases/epidemiology , Brain Diseases/etiology , COVID-19/mortality , Female , Hospital Mortality , Humans , Intubation, Intratracheal/statistics & numerical data , Male , Middle Aged , Nervous System Diseases/mortality , Neurotoxicity Syndromes , New York City/epidemiology , Organ Dysfunction Scores , Patient Discharge/statistics & numerical data , Prospective Studies , Sex Factors , Spinal Cord Diseases/epidemiology , Spinal Cord Diseases/etiology , Young Adult
3.
Neurocrit Care ; 34(3): 748-759, 2021 06.
Article in English | MEDLINE | ID: covidwho-728269

ABSTRACT

BACKGROUND AND PURPOSE: While the thrombotic complications of COVID-19 have been well described, there are limited data on clinically significant bleeding complications including hemorrhagic stroke. The clinical characteristics, underlying stroke mechanism, and outcomes in this particular subset of patients are especially salient as therapeutic anticoagulation becomes increasingly common in the treatment and prevention of thrombotic complications of COVID-19. METHODS: We conducted a retrospective cohort study of patients with hemorrhagic stroke (both non-traumatic intracerebral hemorrhage and spontaneous non-aneurysmal subarachnoid hemorrhage) who were hospitalized between March 1, 2020, and May 15, 2020, within a major healthcare system in New York, during the coronavirus pandemic. Patients with hemorrhagic stroke on admission and who developed hemorrhage during hospitalization were both included. We compared the clinical characteristics of patients with hemorrhagic stroke and COVID-19 to those without COVID-19 admitted to our hospital system between March 1, 2020, and May 15, 2020 (contemporary controls), and March 1, 2019, and May 15, 2019 (historical controls). Demographic variables and clinical characteristics between the individual groups were compared using Fischer's exact test for categorical variables and nonparametric test for continuous variables. We adjusted for multiple comparisons using the Bonferroni method. RESULTS: During the study period in 2020, out of 4071 patients who were hospitalized with COVID-19, we identified 19 (0.5%) with hemorrhagic stroke. Of all COVID-19 with hemorrhagic stroke, only three had isolated non-aneurysmal SAH with no associated intraparenchymal hemorrhage. Among hemorrhagic stroke in patients with COVID-19, coagulopathy was the most common etiology (73.7%); empiric anticoagulation was started in 89.5% of these patients versus 4.2% in contemporary controls (p ≤ .001) and 10.0% in historical controls (p ≤ .001). Compared to contemporary and historical controls, patients with COVID-19 had higher initial NIHSS scores, INR, PTT, and fibrinogen levels. Patients with COVID-19 also had higher rates of in-hospital mortality (84.6% vs. 4.6%, p ≤ 0.001). Sensitivity analyses excluding patients with strictly subarachnoid hemorrhage yielded similar results. CONCLUSION: We observed an overall low rate of imaging-confirmed hemorrhagic stroke among patients hospitalized with COVID-19. Most hemorrhages in patients with COVID-19 infection occurred in the setting of therapeutic anticoagulation and were associated with increased mortality. Further studies are needed to evaluate the safety and efficacy of therapeutic anticoagulation in patients with COVID-19.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/complications , Hemorrhagic Stroke/epidemiology , Aged , Aged, 80 and over , COVID-19/drug therapy , COVID-19/mortality , Female , Hemorrhagic Stroke/diagnosis , Hemorrhagic Stroke/virology , Hospitalization , Humans , Male , Middle Aged , New York City , Retrospective Studies , Risk Factors , Survival Rate
4.
J Neurol Sci ; 417: 117087, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-696852

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (Covid-19) pandemic has led to challenges in provision of care, clinical assessment and communication with families. The unique considerations associated with evaluation of catastrophic brain injury and death by neurologic criteria in patients with Covid-19 infection have not been examined. METHODS: We describe the evaluation of six patients hospitalized at a health network in New York City in April 2020 who had Covid-19, were comatose and had absent brainstem reflexes. RESULTS: Four males and two females with a median age of 58.5 (IQR 47-68) were evaluated for catastrophic brain injury due to stroke and/or global anoxic injury at a median of 14 days (IQR 13-18) after admission for acute respiratory failure due to Covid-19. All patients had hypotension requiring vasopressors and had been treated with sedative/narcotic drips for ventilator dyssynchrony. Among these patients, 5 had received paralytics. Apnea testing was performed for 1 patient due to the decision to withdraw treatment (n = 2), concern for inability to tolerate testing (n = 2) and observation of spontaneous respirations (n = 1). The apnea test was aborted due to hypoxia and hypotension. After ancillary testing, death was declared in three patients based on neurologic criteria and in three patients based on cardiopulmonary criteria (after withdrawal of support (n = 2) or cardiopulmonary arrest (n = 1)). A family member was able to visit 5/6 patients prior to cardiopulmonary arrest/discontinuation of organ support. CONCLUSION: It is feasible to evaluate patients with catastrophic brain injury and declare brain death despite the Covid-19 pandemic, but this requires unique considerations.


Subject(s)
Betacoronavirus , Brain Death/diagnosis , Brain Injuries/etiology , Coronavirus Infections/complications , Pandemics , Pneumonia, Viral/complications , Aged , Apnea/etiology , COVID-19 , Cerebral Hemorrhage/etiology , Contraindications, Procedure , Electroencephalography , Female , Heart Arrest/etiology , Humans , Hypoxia, Brain/etiology , Male , Middle Aged , Neuroimaging , Neurologic Examination , Professional-Family Relations , SARS-CoV-2 , Tissue and Organ Procurement , Truth Disclosure
SELECTION OF CITATIONS
SEARCH DETAIL