Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Clin Imaging ; 85: 89-93, 2022 May.
Article in English | MEDLINE | ID: covidwho-1763642

ABSTRACT

OBJECTIVE: To investigate the proportion of published imaging studies relative to incidence and mortality rate per cancer type. METHODS: From a random sample of 2500 articles published in 2019 by the top 25 imaging-related journals, we included cancer imaging studies. The publication-to-incidence and publication-to-mortality ratios (defined as the publication rate divided by the proportional incidence and mortality rate, respectively) were calculated per cancer type. Ratios >1 indicate a higher publication rate compared to the relative incidence or mortality rate of a specific cancer. Ratios <1 indicate a lower publication rate compared to the relative incidence or mortality rate of a specific cancer. RESULTS: 620 original cancer imaging studies were included. Female breast cancer (20.2%), prostate cancer (13.0%), liver cancer (12.9%), lung cancer (8.8%), and cancers in the central nervous system (8.1%) comprised the top 5 of cancers investigated. Cancers in the central nervous system and liver had publication-to-incidence ratios >2, whereas nonmelanoma of the skin, leukemia, stomach cancer, and laryngeal cancer had publication-to-incidence ratios <0.2. Cancers in the prostate, central nervous system, female breast, and kidney had publication-to-mortality ratios >2, whereas esophageal cancer, stomach cancer, laryngeal cancer, and leukemia had publication-to-mortality ratios <0.2. CONCLUSION: This overview of published cancer imaging research may be informative and useful to all stakeholders in the field of cancer imaging. The potential causes of disproportionality between the publication rate vs. incidence and mortality rates of some cancer types are multifactorial and need to be further elucidated.


Subject(s)
Esophageal Neoplasms , Neoplasms , Prostatic Neoplasms , Stomach Neoplasms , Diagnostic Imaging , Humans , Incidence , Male , Neoplasms/diagnostic imaging , Neoplasms/epidemiology , Prostatic Neoplasms/complications
2.
Chest ; 159(5): 2108, 2021 05.
Article in English | MEDLINE | ID: covidwho-1324067
3.
Semin Nucl Med ; 51(6): 633-645, 2021 11.
Article in English | MEDLINE | ID: covidwho-1300228

ABSTRACT

White blood cells activated by either a pathogen or as part of a systemic inflammatory disease are characterized by high energy consumption and are therefore taking up the glucose analogue PET tracer FDG avidly. It is therefore not surprising that a steadily growing body of research and clinical reports now supports the use of FDG PET/CT to diagnose a wide range of patients with non-oncological diseases. However, using FDG PET/CT in patients with infectious or inflammatory diseases has some limitations and potential pitfalls that are not necessarily as pronounced in oncology FDG PET/CT. Some of these limitations are of a general nature and related to the laborious acquisition of PET images in patients that are often acutely ill, whereas others are more disease-specific and related to the particular metabolism in some of the organs most commonly affected by infections or inflammatory disease. Both inflammatory and infectious diseases are characterized by a more diffuse and less pathognomonic pattern of FDG uptake than oncology FDG PET/CT and the affected organs also typically have some physiological FDG uptake. In addition, patients referred to PET/CT with suspected infection or inflammation are rarely treatment naïve and may have received varying doses of antibiotics, corticosteroids or other immune-modulating drugs at the time of their examination. Combined, this results in a higher rate of false positive FDG findings and also in some cases a lower sensitivity to detect active disease. In this review, we therefore discuss the limitations and pitfalls of FDG PET/CT to diagnose infections and inflammation taking these issues into consideration. Our review encompasses the most commonly encountered inflammatory and infectious diseases in head and neck, in the cardiovascular system, in the abdominal organs and in the musculoskeletal system. Finally, new developments in the field of PET/CT that may help overcome some of these limitations are briefly highlighted.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Inflammation/diagnostic imaging , Positron-Emission Tomography
4.
J Am Coll Radiol ; 19(2 Pt B): 324-326, 2022 02.
Article in English | MEDLINE | ID: covidwho-1284164
5.
Eur Radiol ; 31(11): 8168-8186, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1219503

ABSTRACT

PURPOSE: To investigate, in a meta-analysis, the frequency of pulmonary embolism (PE) in patients with COVID-19 and whether D-dimer assessment may be useful to select patients for computed tomography pulmonary angiography (CTPA). METHODS: A systematic literature search was performed for original studies which reported the frequency of PE on CTPA in patients with COVID-19. The frequency of PE, the location of PE, and the standardized mean difference (SMD) of D-dimer levels between patients with and without PE were pooled by random effects models. RESULTS: Seventy-one studies were included. Pooled frequencies of PE in patients with COVID-19 at the emergency department (ED), general wards, and intensive care unit (ICU) were 17.9% (95% CI: 12.0-23.8%), 23.9% (95% CI: 15.2-32.7%), and 48.6% (95% CI: 41.0-56.1%), respectively. PE was more commonly located in peripheral than in main pulmonary arteries (pooled frequency of 65.3% [95% CI: 60.0-70.1%] vs. 32.9% [95% CI: 26.7-39.0%]; OR = 3.540 [95% CI: 2.308-5.431%]). Patients with PE had significantly higher D-dimer levels (pooled SMD of 1.096 [95% CI, 0.844-1.349]). D-dimer cutoff levels which have been used to identify patients with PE varied between 1000 and 4800 µg/L. CONCLUSION: The frequency of PE in patients with COVID-19 is highest in the ICU, followed by general wards and the ED. PE in COVID-19 is more commonly located in peripheral than in central pulmonary arteries, which suggests local thrombosis to play a major role. D-dimer assessment may help to select patients with COVID-19 for CTPA, using D-dimer cutoff levels of at least 1000 µg/L. KEY POINTS: • The frequency of PE in patients with COVID-19 is highest in the ICU, followed by general wards and the ED. • PE in COVID-19 is more commonly located in peripheral than in central pulmonary arteries. • D-dimer levels are significantly higher in patients with COVID-19 who have PE.


Subject(s)
COVID-19 , Pulmonary Embolism , Fibrin Fibrinogen Degradation Products , Humans , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/epidemiology , SARS-CoV-2
6.
Radiol Cardiothorac Imaging ; 3(1): e200510, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1156021

ABSTRACT

PURPOSE: To determine the diagnostic performance of the COVID-19 Reporting and Data System (CO-RADS) and the Radiological Society of North America (RSNA) categorizations in patients with clinically suspected coronavirus disease 2019 (COVID-19) infection. MATERIALS AND METHODS: In this meta-analysis, studies from 2020, up to August 24, 2020 were assessed for inclusion criteria of studies that used CO-RADS or the RSNA categories for scoring chest CT in patients with suspected COVID-19. A total of 186 studies were identified. After review of abstracts and text, a total of nine studies were included in this study. Patient information (n¸ age, sex), CO-RADS and RSNA scoring categories, and other study characteristics were extracted. Study quality was assessed with the QUADAS-2 tool. Meta-analysis was performed with a random effects model. RESULTS: Nine studies (3283 patients) were included. Overall study quality was good, except for risk of non-performance of repeated reverse transcriptase polymerase chain reaction (RT-PCR) after negative initial RT-PCR and persistent clinical suspicion in four studies. Pooled COVID-19 frequencies in CO-RADS categories were: 1, 8.8%; 2, 11.1%; 3, 24.6%; 4, 61.9%; and 5, 89.6%. Pooled COVID-19 frequencies in RSNA classification categories were: negative 14.4%; atypical, 5.7%; indeterminate, 44.9%; and typical, 92.5%. Pooled pairs of sensitivity and specificity using CO-RADS thresholds were the following: at least 3, 92.5% (95% CI: 87.1, 95.7) and 69.2% (95%: CI: 60.8, 76.4); at least 4, 85.8% (95% CI: 78.7, 90.9) and 84.6% (95% CI: 79.5, 88.5); and 5, 70.4% (95% CI: 60.2, 78.9) and 93.1% (95% CI: 87.7, 96.2). Pooled pairs of sensitivity and specificity using RSNA classification thresholds for indeterminate were 90.2% (95% CI: 87.5, 92.3) and 75.1% (95% CI: 68.9, 80.4) and for typical were 65.2% (95% CI: 37.0, 85.7) and 94.9% (95% CI: 86.4, 98.2). CONCLUSION: COVID-19 infection frequency was higher in patients categorized with higher CORADS and RSNA classification categories.

8.
Radiographics ; 40(7): 1848-1865, 2020.
Article in English | MEDLINE | ID: covidwho-889935

ABSTRACT

Chest CT has a potential role in the diagnosis, detection of complications, and prognostication of coronavirus disease 2019 (COVID-19). Implementation of appropriate precautionary safety measures, chest CT protocol optimization, and a standardized reporting system based on the pulmonary findings in this disease will enhance the clinical utility of chest CT. However, chest CT examinations may lead to both false-negative and false-positive results. Furthermore, the added value of chest CT in diagnostic decision making is dependent on several dynamic variables, most notably available resources (real-time reverse transcription-polymerase chain reaction [RT-PCR] tests, personal protective equipment, CT scanners, hospital and radiology personnel availability, and isolation room capacity) and the prevalence of both COVID-19 and other diseases with overlapping manifestations at chest CT. Chest CT is valuable to detect both alternative diagnoses and complications of COVID-19 (acute respiratory distress syndrome, pulmonary embolism, and heart failure), while its role for prognostication requires further investigation. The authors describe imaging and managing care of patients with COVID-19, with topics including (a) chest CT protocol, (b) chest CT findings of COVID-19 and its complications, (c) the diagnostic accuracy of chest CT and its role in diagnostic decision making and prognostication, and (d) reporting and communicating chest CT findings. The authors also review other specific topics, including the pathophysiology and clinical manifestations of COVID-19, the World Health Organization case definition, the value of performing RT-PCR tests, and the radiology department and personnel impact related to performing chest CT in COVID-19. ©RSNA, 2020.


Subject(s)
Coronavirus Infections/diagnosis , Lung/diagnostic imaging , Pneumonia, Viral/diagnosis , Radiography, Thoracic , Tomography, X-Ray Computed , COVID-19 , Clinical Protocols , Coronavirus Infections/physiopathology , Humans , Pandemics , Pneumonia, Viral/physiopathology , Radiologists/education
11.
Chest ; 158(5): 1885-1895, 2020 11.
Article in English | MEDLINE | ID: covidwho-764359

ABSTRACT

BACKGROUND: Chest CT may be used for the diagnosis of coronavirus disease 2019 (COVID-19), but clear scientific evidence is lacking. Therefore, we systematically reviewed and meta-analyzed the chest CT imaging signature of COVID-19. RESEARCH QUESTION: What is the chest CT imaging signature of COVID-19 infection? STUDY DESIGN AND METHODS: A systematic literature search was performed for original studies on chest CT imaging findings in patients with COVID-19. Methodologic quality of studies was evaluated. Pooled prevalence of chest CT imaging findings were calculated with the use of a random effects model in case of between-study heterogeneity (predefined as I2 ≥50); otherwise, a fixed effects model was used. RESULTS: Twenty-eight studies were included. The median number of patients with COVID-19 per study was 124 (range, 50-476), comprising a total of 3,466 patients. Median prevalence of symptomatic patients was 99% (range, >76.3%-100%). Twenty-seven of the studies (96%) had a retrospective design. Methodologic quality concerns were present with either risk of or actual referral bias (13 studies), patient spectrum bias (eight studies), disease progression bias (26 studies), observer variability bias (27 studies), and test review bias (14 studies). Pooled prevalence was 10.6% for normal chest CT imaging findings. Pooled prevalences were 90.0% for posterior predilection, 81.0% for ground-glass opacity, 75.8% for bilateral abnormalities, 73.1% for left lower lobe involvement, 72.9% for vascular thickening, and 72.2% for right lower lobe involvement. Pooled prevalences were 5.2% for pleural effusion, 5.1% for lymphadenopathy, 4.1% for airway secretions/tree-in-bud sign, 3.6% for central lesion distribution, 2.7% for pericardial effusion, and 0.7% for cavitation/cystic changes. Pooled prevalences of other CT imaging findings ranged between 10.5% and 63.2%. INTERPRETATION: Studies on chest CT imaging findings in COVID-19 suffer from methodologic quality concerns. More high-quality research is necessary to establish diagnostic CT criteria for COVID-19. Based on the available evidence that requires cautious interpretation, several chest CT imaging findings appear to be suggestive of COVID-19, but normal chest CT imaging findings do not exclude COVID-19, not even in symptomatic patients.


Subject(s)
Coronavirus Infections/diagnostic imaging , Lung/diagnostic imaging , Lymphadenopathy/diagnostic imaging , Pleural Effusion/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed , Betacoronavirus , COVID-19 , Humans , Pandemics , Pericardial Effusion/diagnostic imaging , SARS-CoV-2 , Thorax/diagnostic imaging
12.
AJR Am J Roentgenol ; 215(6): 1342-1350, 2020 12.
Article in English | MEDLINE | ID: covidwho-457606

ABSTRACT

OBJECTIVE. The purpose of this article is to systematically review and meta-analyze the diagnostic accuracy of chest CT in detecting coronavirus disease (COVID-19). MATERIALS AND METHODS. MEDLINE was systematically searched for publications on the diagnostic performance of chest CT in detecting COVID-19. Methodologic quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Meta-analysis was performed using a bivariate random-effects model. RESULTS. Six studies were included, comprising 1431 patients. All six studies included patients at high risk of COVID-19, and five studies explicitly reported that they included only symptomatic patients. Mean prevalence of COVID-19 was 47.9% (range, 27.6-85.4%). High or potential risk of bias was present throughout all QUADAS-2 domains in all six studies. Sensitivity ranged from 92.9% to 97.0%, and specificity ranged from 25.0% to 71.9%, with pooled estimates of 94.6% (95% CI, 91.9-96.4%) and 46.0% (95% CI, 31.9-60.7%), respectively. The included studies were statistically homogeneous in their estimates of sensitivity (p = 0.578) and statistically heterogeneous in their estimates of specificity (p < 0.001). CONCLUSION. Diagnostic accuracy studies on chest CT in COVID-19 suffer from methodologic quality issues. Chest CT appears to have a relatively high sensitivity in symptomatic patients at high risk of COVID-19, but it cannot exclude COVID-19. Specificity is poor. These data, along with other local factors such as COVID-19 prevalence, available real-time reverse transcriptase-polymerase chain reaction tests, staff, hospital, and CT scanning capacity, can be useful to healthcare professionals and policy makers to decide on the utility of chest CT for COVID-19 detection in the hospital setting.


Subject(s)
COVID-19/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Tomography, X-Ray Computed , COVID-19/epidemiology , Diagnosis, Differential , Humans , Pandemics , Prevalence , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL