Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 11303, 2022 Jul 04.
Article in English | MEDLINE | ID: covidwho-1972650

ABSTRACT

Aerosol emissions from wind instruments are a suspected route of transmission for airborne infectious diseases, such as SARS-CoV-2. We evaluated aerosol number emissions (from 0.25 to 35.15 µm) from 81 volunteer performers of both sexes and varied age (12 to 63 years) while playing wind instruments (bassoon, clarinet, flute, French horn, oboe, piccolo, saxophone, trombone, trumpet, and tuba) or singing. Measured emissions spanned more than two orders of magnitude, ranging in rate from < 8 to 1,815 particles s-1, with brass instruments, on average, producing 191% (95% CI 81-367%) more aerosol than woodwinds. Being male was associated with a 70% increase in emissions (vs. female; 95% CI 9-166%). Each 1 dBA increase in sound pressure level was associated with a 28% increase (95% CI 10-40%) in emissions from brass instruments; sound pressure level was not associated with woodwind emissions. Age was not a significant predictor of emissions. The use of bell covers reduced aerosol emissions from three brass instruments tested (trombone, tuba, and trumpet), with average reductions ranging from 53 to 73%, but not for the two woodwind instruments tested (oboe and clarinet). Results from this work can facilitate infectious disease risk management for the performing arts.


Subject(s)
COVID-19 , Music , Adolescent , Adult , Aerosols , COVID-19/epidemiology , COVID-19/prevention & control , Child , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Sound , Young Adult
2.
Int J Hyg Environ Health ; 241: 113949, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757396

ABSTRACT

Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 µg/m3 (65,154 µg/m3) for traditional stove users and 52 µg/m3 (39, 81 µg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , C-Reactive Protein , Cooking/methods , Cross-Sectional Studies , Female , Honduras/epidemiology , Humans , Particulate Matter/analysis , Wood/analysis , Wood/chemistry
3.
Geohealth ; 5(9): e2021GH000482, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1426934

ABSTRACT

Familiarity with the use of face coverings to reduce the risk of respiratory disease has increased during the coronavirus pandemic; however, recommendations for their use outside of the pandemic remains limited. Here, we develop a modeling framework to quantify the potential health benefits of wearing a face covering or respirator to mitigate exposure to particulate air pollution. This framework accounts for the wide range of available face coverings and respirators, fit factors and efficacy, air pollution characteristics, and exposure-response data. Our modeling shows that N95 respirators offer robust protection against different sources of particulate matter, reducing exposure by more than a factor of 14 when worn with a leak rate of 5%. Synthetic-fiber masks offer less protection with a strong dependence on aerosol size distribution (protection factors ranging from 4.4 to 2.2), while natural-fiber and surgical masks offer reductions in the exposure of 1.9 and 1.7, respectively. To assess the ability of face coverings to provide population-level health benefits to wildfire smoke, we perform a case study for the 2012 Washington state fire season. Our models suggest that although natural-fiber masks offer minor reductions in respiratory hospitalizations attributable to smoke (2%-11%) due to limited filtration efficiency, N95 respirators and to a lesser extent surgical and synthetic-fiber masks may lead to notable reductions in smoke-attributable hospitalizations (22%-39%, 9%-24%, and 7%-18%, respectively). The filtration efficiency, bypass rate, and compliance rate (fraction of time and population wearing the device) are the key factors governing exposure reduction potential and health benefits during severe wildfire smoke events.

4.
Environ Sci Technol ; 55(5): 3136-3143, 2021 03 02.
Article in English | MEDLINE | ID: covidwho-1091532

ABSTRACT

The performance of masks, whether intended to protect the community from exhaled infectious aerosol or to protect the wearer from inhaled infectious aerosol, depends on factors such as filtration efficiency, particle size distribution, leakage, and ventilation rate. These factors depend on the activities and facial features of the mask wearer so that the mask performance for real-world applications is difficult to predict. The present work shows how protection factor, a quantity often used to describe mask performance, can be estimated without involving human volunteers. By constraining these factors to known values, mask protection factors can be compared fairly and efficiently following a series of filtration efficiency measurements performed in the laboratory. Protection factors and mask emissions for exhalation and inhalation were evaluated for masks of seven types currently in use around the world and for a hypothetical mask with 99% efficiency on all particles. The performance of reusable masks made from cotton fabric was limited by the size of the native cotton fibers. Masks that utilized finer fibers, particularly electret fibers with relatively small diameters, showed excellent performance with moderate flow resistance. Results from this work, in addition to simple guidance for mask fit and usage, can facilitate risk communication and decision-making efforts during the COVID-19 pandemic.


Subject(s)
COVID-19 , Masks , Aerosols , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL