Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
J Med Virol ; 94(5): 2284-2289, 2022 05.
Article in English | MEDLINE | ID: covidwho-1777584


Remdesivir is a broad-spectrum antiviral agent able to inhibit the RNA polymerase of SARS-CoV-2. At present, studies focusing on the effect of remdesivir on viral load (VL) are few and with contrasting results. Aim of the present study was to evaluate the effect of remdesivir on SARS-CoV-2 VL from nasopharyngeal swabs (cycle threshold criterion) in a sample of patients treated with the drug, compared with patients who did not receive the antiviral treatment. This retrospective analysis evaluated patients with (1) real-time polymerase chain reaction (RT-PCR) confirmed COVID-19 diagnosis and (2) availability of at least two positive nasopharyngeal swabs analysed with the same analytic platform (ORF target gene, Ingenius ELITe, ELITechGroup, Puteaux, France). Upper respiratory specimens from nasopharyngeal swabs were collected at admission (T0) and 7-14 days after treatment, upon clinical decision. A total of 27 patients treated with remdesivir (Group A) met the inclusion criteria and were compared with 18 patients (Group B) treated with standard care, matched for baseline clinical characteristics. At baseline, both remdesivir-treated and nontreated patients showed comparable VLs (21.73 ± 6.81 vs. 19.27 ± 5.24, p = 0.348). At the second swab, remdesivir-treated patients showed a steeper VL reduction with respect to controls (34.28 ± 7.73 vs. 27.22 ± 3.92; p < 0.001). Longitudinal linear model estimated a mean decrease in cycle threshold equal to 0.61 (SE: 0.09) per day in remdesivir-treated versus 0.33 (SE: 0.10) per day in remdesivir nontreated patients (p for heterogeneity = 0.045). The present study shows that the administration of remdesivir in hospitalized COVID-19 patients significantly reduces the VL on nasopharyngeal swabs.

COVID-19 , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19 Testing , Case-Control Studies , Humans , Nasopharynx , Retrospective Studies , Viral Load
Viruses ; 13(2)2021 02 11.
Article in English | MEDLINE | ID: covidwho-1079723


The coronavirus disease 2019 (Covid-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and presents a global health emergency that needs urgent intervention. Viruses constantly change through mutation, and new variants of a virus are expected to occur over time. In the United Kingdom (UK), a new variant called B.1.1.7 has emerged with an unusually large number of mutations. The aim of this study is to evaluate the level of protection of sera from 12 patients infected and later healed in Apulia Region (Italy) with Covid-19 between March and November 2020, when the English variant was not circulating in this territory yet, against the new VOC 202012/01 variant by seroneutralization assay. The sera of patients had already been tested before, using a virus belonging to the lineage B.1 and showed an antibody neutralizing titer ranging between 1:160 and 1:320. All the 12 sera donors confirmed the same titers of neutralizing antibodies obtained with a strain belonging to the lineage B.1.1.7 (VOC 202012/01). These data indicate that antibodies produced in subjects infected with variants of Sars-CoV-2 strain before the appearance of the English one, seem to have a neutralizing power also against this variant.

Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Animals , COVID-19/epidemiology , Chlorocebus aethiops , Humans , Italy , Neutralization Tests , Pandemics , United Kingdom , Vero Cells