ABSTRACT
PURPOSE: COVID-19 infection in immunodeficient individuals can result in chronically poor health, persistent or relapsing SARS-CoV-2 PCR positivity, and long-term infectious potential. While clinical trials have demonstrated promising outcomes using anti-SARS-CoV-2 medicines in immunocompetent hosts, their ability to achieve sustained viral clearance in immunodeficient patients remains unknown. We therefore aimed to study long-term virological outcomes in patients treated at our centre. METHODS: We followed up immunocompromised inpatients treated with casirivimab-imdevimab (Ronapreve) between September and December 2021, and immunocompromised patients who received sotrovimab, molnupiravir, nirmatrelvir/ritonavir (Paxlovid), or no treatment from December 2021 to March 2022. Nasopharyngeal swab and sputum samples were obtained either in hospital or in the community until sustained viral clearance, defined as 3 consecutive negative PCR samples, was achieved. Positive samples were sequenced and analysed for mutations of interest. RESULTS: We observed sustained viral clearance in 71 of 103 patients, none of whom died. Of the 32/103 patients where sustained clearance was not confirmed, 6 died (between 2 and 34 days from treatment). Notably, we observed 25 cases of sputum positivity despite negative nasopharyngeal swab samples, as well as recurrence of SARS-CoV-2 positivity following a negative sample in 12 cases. Patients were then divided into those who cleared within 28 days and those with PCR positivity beyond 28 days. We noted lower B cell counts in the group with persistent PCR positivity (mean (SD) 0.06 (0.10) ×109/L vs 0.22 (0.28) ×109/L, p = 0.015) as well as lower IgA (median (IQR) 0.00 (0.00-0.15) g/L vs 0.40 (0.00-0.95) g/L, p = 0.001) and IgM (median (IQR) 0.05 (0.00-0.28) g/L vs 0.35 (0.10-1.10) g/L, p = 0.005). No differences were seen in CD4+ or CD8+ T cell counts. Antiviral treatment did not impact risk of persistent PCR positivity. CONCLUSION: Persistent SARS-CoV-2 PCR positivity is common among immunodeficient individuals, especially those with antibody deficiencies, regardless of anti-viral treatment. Peripheral B cell count and serum IgA and IgM levels are predictors of viral persistence.
ABSTRACT
Since June 2020, the SARS-CoV-2 Immunity and Reinfection Evaluation (SIREN) study has conducted routine PCR testing in UK healthcare workers and sequenced PCR-positive samples. SIREN detected increases in infections and reinfections during Omicron subvariant waves contemporaneous with national surveillance. SIREN's sentinel surveillance methods can be used for variant surveillance.
ABSTRACT
BACKGROUND: Following the full re-opening of schools in England and emergence of the SARS-CoV-2 Alpha variant, we investigated the risk of SARS-CoV-2 infection in students and staff who were contacts of a confirmed case in a school bubble (school groupings with limited interactions), along with their household members. METHODS: Primary and secondary school bubbles were recruited into sKIDsBUBBLE after being sent home to self-isolate following a confirmed case of COVID-19 in the bubble. Bubble participants and their household members were sent home-testing kits comprising nasal swabs for RT-PCR testing and whole genome sequencing, and oral fluid swabs for SARS-CoV-2 antibodies. RESULTS: During November-December 2020, 14 bubbles were recruited from 7 schools, including 269 bubble contacts (248 students, 21 staff) and 823 household contacts (524 adults, 299 children). The secondary attack rate was 10.0% (6/60) in primary and 3.9% (4/102) in secondary school students, compared to 6.3% (1/16) and 0% (0/1) among staff, respectively. The incidence rate for household contacts of primary school students was 6.6% (12/183) and 3.7% (1/27) for household contacts of primary school staff. In secondary schools, this was 3.5% (11/317) and 0% (0/1), respectively. Household contacts were more likely to test positive if their bubble contact tested positive although there were new infections among household contacts of uninfected bubble contacts. INTERPRETATION: Compared to other institutional settings, the overall risk of secondary infection in school bubbles and their household contacts was low. Our findings are important for developing evidence-based infection prevention guidelines for educational settings.
Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Adolescent , Adult , Antibodies, Viral/analysis , COVID-19/virology , Child , Contact Tracing , England/epidemiology , Female , Humans , Incidence , Male , Nasopharynx/virology , Prospective Studies , RNA, Viral/analysis , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Schools/statistics & numerical data , Students/statistics & numerical dataABSTRACT
BACKGROUND: The role of educational settings in SARS-CoV-2 infection and transmission remains controversial. We investigated SARS-CoV-2 infection, seroprevalence, and seroconversion rates in secondary schools during the 2020/21 academic year, which included the emergence of the more transmissible alpha and delta variants, in England. METHODS: The UK Health Security Agency (UKHSA) initiated prospective surveillance in 18 urban English secondary schools. Participants had nasal swabs for SARS-CoV-2 RT-PCR and blood sampling for SARS-CoV-2 nucleoprotein and spike protein antibodies at the start (Round 1: September-October 2020) and end (Round 2: December 2020) of the autumn term, when schools reopened after national lockdown was imposed in January 2021 (Round 3: March-April 2021), and end of the academic year (Round 4: May-July 2021). FINDINGS: We enrolled 2314 participants (1277 students, 1037 staff; one participant had missing data for PCR testing). In-school testing identified 31 PCR-positive participants (20 students, 11 staff). Another 247 confirmed cases (112 students, 135 staff) were identified after linkage with national surveillance data, giving an overall positivity rate of 12.0% (278/2313; staff: 14.1%, 146/1037 vs students: 10.3%, 132/1276; p = 0.006). Trends were similar to national infection data. Nucleoprotein-antibody seroprevalence increased for students and staff between Rounds 1 and 3 but were similar between Rounds 3 and 4, when the delta variant was the dominant circulating strain. Overall, Nucleoprotein-antibody seroconversion was 18.4% (137/744) in staff and 18.8% (146/778) in students, while Spike-antibody seroconversion was higher in staff (72.8%, 525/721) than students (21.3%, 163/764) because of vaccination. INTERPRETATION: SARS-CoV-2 infection rates in secondary schools remained low when community infection rates were low, even as the delta variant was emerging in England. FUNDING: This study was funded by the UK Department of Health and Social Care.
ABSTRACT
BACKGROUND: Understanding the duration of protection and risk of reinfection after natural infection is crucial to planning COVID-19 vaccination for at-risk groups, including care home residents, particularly with the emergence of more transmissible variants. We report on the duration, neutralising activity, and protection against the alpha variant of previous SARS-CoV-2 infection in care home residents and staff infected more than 6 months previously. METHODS: We did this prospective observational cohort surveillance in 13 care homes in Greater London, England. All staff and residents were included. Staff and residents had regular nose and throat screening for SARS-CoV-2 by RT-PCR according to national guidelines, with ad hoc testing of symptomatic individuals. From January, 2021, antigen lateral flow devices were also used, but positive tests still required RT-PCR confirmation. Staff members took the swab samples for themselves and the residents. The primary outcome was SARS-CoV-2 RT-PCR positive primary infection or reinfection in previously infected individuals, as determined by previous serological testing and screening or diagnostic RT-PCR results. Poisson regression and Cox proportional hazards models were used to estimate protective effectiveness of previous exposure. SARS-CoV-2 spike, nucleoprotein, and neutralising antibodies were assessed at multiple timepoints as part of the longitudinal follow-up. FINDINGS: Between April 10 and Aug 3, 2020, we recruited and tested 1625 individuals (933 staff and 692 residents). 248 participants were lost to follow-up (123 staff and 125 residents) and 1377 participants were included in the follow-up period to Jan 31, 2021 (810 staff and 567 residents). There were 23 reinfections (ten confirmed, eight probable, five possible) in 656 previously infected individuals (366 staff and 290 residents), compared with 165 primary infections in 721 susceptible individuals (444 staff and 277 residents). Those with confirmed reinfections had no or low neutralising antibody concentration before reinfection, with boosting of titres after reinfection. Kinetics of binding and neutralising antibodies were similar in older residents and younger staff. INTERPRETATION: SARS-CoV-2 reinfections were rare in older residents and younger staff. Protection from SARS-CoV-2 was sustained for longer than 9 months, including against the alpha variant. Reinfection was associated with no or low neutralising antibody before reinfection, but significant boosting occurred on reinfection. FUNDING: Public Health England.
Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , COVID-19 Vaccines , Humans , ReinfectionABSTRACT
OBJECTIVES: We assessed SARS-CoV-2 infection, seroprevalence and seroconversion in students and staff when secondary schools reopened in March 2021. METHODS: We initiated SARS-CoV-2 surveillance in 18 secondary schools across six regions in September 2020. Participants provided nasal swabs for RT-PCR and blood samples for SARS-CoV-2 antibodies at the beginning (September 2020) and end (December 2020) of the autumn term and at the start of the spring term (March 2021). FINDINGS: In March 2021, 1895 participants (1100 students:795 staff) were tested; 5.6% (61/1094) students and 4.4% (35/792) staff had laboratory-confirmed SARS-CoV-2 infection from December 2020-March 2021. Nucleoprotein-antibody seroprevalence was 36.3% (370/1018) in students and 31.9% (245/769) in staff, while spike-antibody prevalence was 39.5% (402/1018) and 59.8% (459/769), respectively, similar to regional community seroprevalence. Between December 2020 and March 2021, 14.8% (97/656; 95%CI: 12.2-17.7) students and 10.0% (59/590; 95%CI: 7.7-12.7) staff seroconverted. Weekly seroconversion rates were similar from September to December 2020 (8.0/1000) and from December 2020 to March 2021 (7.9/1000; students: 9.3/1,000; staff: 6.3/1,000). INTERPRETATION: By March 2021, a third of secondary school students and staff had evidence of prior infection based on N-antibody seropositivity, and an additional third of staff had evidence of vaccine-induced immunity based on S-antibody seropositivity.
Subject(s)
COVID-19 , SARS-CoV-2 , Seroconversion , Antibodies, Viral/blood , COVID-19/epidemiology , COVID-19/immunology , England/epidemiology , Humans , Prospective Studies , Schools , Seroepidemiologic Studies , StudentsABSTRACT
BACKGROUND: Older children have higher SARS-CoV-2 infection rates than younger children. We investigated SARS-CoV-2 infection, seroprevalence and seroconversion rates in staff and students following the full reopening of all secondary schools in England. METHODS: Public Health England (PHE) invited secondary schools in six regions (East and West London, Hertfordshire, Derbyshire, Manchester and Birmingham) to participate in SARS-CoV-2 surveillance during the 2020/21 academic year. Participants had nasal swabs for RT-PCR and blood samples for SARS-CoV-2 antibodies at the beginning (September 2020) and end (December 2020) of the autumn term. Multivariable logistic regression was used to assess independent risk factors for seropositivity and seroconversion. FINDINGS: Eighteen schools in six regions enrolled 2,209 participants, including 1,189 (53.8%) students and 1,020 (46.2%) staff. SARS-CoV-2 infection rates were not significantly different between students and staff in round one (5/948; [0.53%] vs. 2/876 [0.23%]; pâ¯=â¯0.46) or round two (10/948 [1.05%] vs. 7/886 [0.79%]; pâ¯=â¯0.63), and similar to national prevalence. None of four and 7/15 (47%) sequenced strains in rounds 1 and 2 were the highly transmissible SARS-CoV-2 B.1.1.7 variant. In round 1, antibody seropositivity was higher in students than staff (114/893 [12.8%] vs. 79/861 [9.2%]; pâ¯=â¯0.016), but similar in round 2 (117/893 [13.1%] vs.117/872 [13.3%]; pâ¯=â¯0.85), comparable to local community seroprevalence. Between the two rounds, 8.7% (57/652) staff and 6.6% (36/549) students seroconverted (pâ¯=â¯0.16). INTERPRETATION: In secondary schools, SARS-CoV-2 infection, seropositivity and seroconversion rates were similar in staff and students, and comparable to local community rates. Ongoing surveillance will be important for monitoring the impact of new variants in educational settings.
ABSTRACT
BACKGROUND: Care homes have been disproportionately affected by the COVID-19 pandemic. We investigated the potential role of asymptomatic infection and silent transmission in London care homes that reported no cases of COVID-19 during the first wave of the pandemic. METHODS: Five care homes with no cases and two care homes reporting a single case of COVID-19 (non-outbreak homes) were investigated with nasal swabbing for SARS-CoV-2 RT-PCR and serology for SARS-CoV-2 antibodies five weeks later. Whole genome sequencing (WGS) was performed on RT-PCR positive samples. Serology results were compared with those of six care homes with recognised outbreaks. FINDINGS: Across seven non-outbreak homes, 718 (387 staff, 331 residents) individuals had a nasal swab and 651 (386 staff, 265 residents) had follow-up serology. Sixteen individuals (13 residents, 3 staff) in five care homes with no reported cases were RT-PCR positive (care home positivity rates, 0 to 7.6%) compared to 13 individuals (3.0 and 10.8% positivity) in two homes reporting a single case.Seropositivity across these seven homes varied between 10.7-56.5%, with four exceeding community seroprevalence in London (14.8%). Seropositivity rates for staff and residents correlated significantly (rs 0.84, [95% CI 0.51-0.95] p <0.001) across the 13 homes. WGS identified multiple introductions into some homes and silent transmission of a single lineage between staff and residents in one home. INTERPRETATION: We found high rates of asymptomatic infection and transmission even in care homes with no COVID-19 cases. The higher seropositivity rates compared to RT-PCR positivity highlights the true extent of the silent outbreak. FUNDING: PHE.
ABSTRACT
Two London care homes experienced a second COVID-19 outbreak, with 29/209 (13.9%) SARS-CoV-2 RT-PCR-positive cases (16/103 residents, 13/106 staff). In those with prior SARS-CoV-2 exposure, 1/88 (1.1%) individuals (antibody positive: 87; RT-PCR-positive: 1) became PCR-positive compared with 22/73 (30.1%) with confirmed seronegative status. After four months protection offered by prior infection against re-infection was 96.2% (95% confidence interval (CI): 72.7-99.5%) using risk ratios from comparison of proportions and 96.1% (95% CI: 78.8-99.3%) using a penalised logistic regression model.
Subject(s)
Antibodies, Viral/blood , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Nursing Homes/statistics & numerical data , Reinfection/prevention & control , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , COVID-19 Serological Testing , Female , Humans , London , Male , Middle Aged , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Whole Genome SequencingABSTRACT
BACKGROUND: Military personnel in enclosed societies are at increased risk of respiratory infections. We investigated an outbreak of Coronavirus Disease 2019 in a London Army barracks early in the pandemic. METHODS: Army personnel, their families and civilians had nasal and throat swabs for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcriptase -polymerase chain reaction (RT-PCR), virus isolation and whole genome sequencing, along with blood samples for SARS-CoV-2 antibodies. All tests were repeated 36 days later. FINDINGS: During the first visit, 304 (254 Army personnel, 10 family members, 36 civilians, 4 not stated) participated and 24/304 (8%) were SARS-CoV-2 RT-PCR positive. Infectious virus was isolated from 7/24 (29%). Of the 285 who provided a blood sample, 7% (19/285) were antibody positive and 63% (12/19) had neutralising antibodies. Twenty-two (22/34, 64%) individuals with laboratory-confirmed infection were asymptomatic. Nine SARS-CoV-2 RT-PCR positive participants were also antibody positive but those who had neutralising antibodies did not have infectious virus. At the second visit, no new infections were detected, and 13% (25/193) were seropositive, including 52% (13/25) with neutralising antibodies. Risk factors for SARS-CoV-2 antibody positivity included contact with a confirmed case (RR 25.2; 95% CI 14-45), being female (RR 2.5; 95% CI 1.0-6.0) and two-person shared bathroom (RR 2.6; 95% CI 1.1-6.4). INTERPRETATION: We identified high rates of asymptomatic SARS-CoV-2 infection. Public Health control measures can mitigate spread but virus re-introduction from asymptomatic individuals remains a risk. Most seropositive individuals had neutralising antibodies and infectious virus was not recovered from anyone with neutralising antibodies. FUNDING: PHE.
ABSTRACT
The introduction of point-of-care tests (POCTs) has presented new opportunities for the management of patients presenting to healthcare providers with acute respiratory symptoms. This Perspective article is based on the experiences of national infection teams/those managing acute respiratory infections across the United Kingdom in terms of the challenges and opportunities that this may present for public health. This Perspective article was conceived and written pre-coronavirus disease (COVID-19), however the principles we outline here for influenza can also be translated to COVID-19 and some key points are made throughout the article. The greatest challenge for intergrating POCTs into non-traditional environments is the capture of data and samples for surveillance purposes which provides information for public health action. However, POCTs together with measures outlined in this article, offer a new paradigm for the management and public health surveillance of patients with influenza.
Subject(s)
Influenza, Human/therapy , Point-of-Care Systems/organization & administration , Point-of-Care Testing , Humans , Influenza, Human/diagnosis , Public Health SurveillanceABSTRACT
BACKGROUND: Care homes have been disproportionately affected by the COVID-19 pandemic and continue to suffer large outbreaks even when community infection rates are declining, thus representing important pockets of transmission. We assessed occupational risk factors for SARS-CoV-2 infection among staff in six care homes experiencing a COVID-19 outbreak during the peak of the pandemic in London, England. METHODS: Care home staff were tested for SARS-COV-2 infection by RT-PCR and asked to report any symptoms, their contact with residents and if they worked in different care homes. Whole genome sequencing (WGS) was performed on RT-PCR positive samples. RESULTS: In total, 53 (21%) of 254 staff were SARS-CoV-2 positive but only 12/53 (23%) were symptomatic. Among staff working in a single care home, SARS-CoV-2 positivity was 15% (2/13), 16% (7/45) and 18% (30/169) in those reporting no, occasional and regular contact with residents. In contrast, staff working across different care homes (14/27, 52%) had a 3.0-fold (95% CI, 1.9-4.8; P<0.001) higher risk of SARS-CoV-2 positivity than staff working in single care homes (39/227, 17%). WGS identified SARS-CoV-2 clusters involving staff only, including some that included staff working across different care homes. CONCLUSIONS: SARS-CoV-2 positivity was significantly higher among staff working across different care homes than those who were working in the same care home. We found local clusters of SARS-CoV-2 infection between staff only, including those with minimal resident contact. Infection control should be extended for all contact, including those between staff, whilst on care home premises.
Subject(s)
Coronavirus Infections/epidemiology , Homes for the Aged/statistics & numerical data , Medical Staff/statistics & numerical data , Nursing Homes/statistics & numerical data , Occupational Exposure/adverse effects , Pneumonia, Viral/epidemiology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/transmission , England/epidemiology , Genome, Viral/genetics , Humans , Infection Control/methods , London/epidemiology , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Whole Genome SequencingABSTRACT
BACKGROUND: Care homes are experiencing large outbreaks of COVID-19 associated with high case-fatality rates. We conducted detailed investigations in six London care homes reporting suspected COVID-19 outbreaks during April 2020. METHODS: Residents and staff had nasal swabs for SARS CoV-2 testing using RT-PCR and were followed-up for 14 days. They were categorized as symptomatic, post-symptomatic or pre-symptomatic if they had symptoms at the time of testing, in the two weeks before or two weeks after testing, respectively, or asymptomatic throughout. Virus isolation and whole genome sequencing (WGS) was also performed. FINDINGS: Across the six care homes, 105/264 (39.8%) residents were SARS CoV-2 positive, including 28 (26.7%) symptomatic, 10 (9.5%) post-symptomatic, 21 (20.0%) pre-symptomatic and 46 (43.8%) who remained asymptomatic. Case-fatality at 14-day follow-up was highest among symptomatic SARS-CoV-2 positive residents (10/28, 35.7%) compared to asymptomatic (2/46, 4.3%), post-symptomatic (2/10, 20.0%) or pre-symptomatic (3/21,14.3%) residents. Among staff, 53/254 (20.9%) were SARS-CoV-2 positive and 26/53 (49.1%) remained asymptomatic. RT-PCR cycle-thresholds and live-virus recovery were similar between symptomatic/asymptomatic residents/staff. Higher RT-PCR cycle threshold values (lower virus load) samples were associated with exponentially decreasing ability to recover infectious virus (P<0.001). WGS identified multiple (up to 9) separate introductions of different SARS-CoV-2 strains into individual care homes. INTERPRETATION: A high prevalence of SARS-CoV-2 positivity was found in care homes residents and staff, half of whom were asymptomatic and potential reservoirs for on-going transmission. A third of symptomatic SARS-CoV-2 residents died within 14 days. Symptom-based screening alone is not sufficient for outbreak control. FUNDING: None.