Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
PLoS One ; 17(3): e0264090, 2022.
Article in English | MEDLINE | ID: covidwho-1753188

ABSTRACT

The objective of this study was to characterize commercially-available cotton fabrics to determine their suitability as materials for construction of cloth masks for personal and public use to reduce infectious disease spread. The study focused on cottons because of their widespread availability, moderate performance and they are recommended for inclusion in home-made masks by international health authorities. Fifty-two cottons were analyzed by electron microscopy to determine fabric characteristics and fabric weights. Sixteen fabrics were selected to test for breathability and to construct 2-ply cotton masks of a standard design to use in quantitative fit testing on a human participant. Cotton mask fitted filtration efficiencies (FFEs) for 0.02-1 µm ambient and aerosolized sodium chloride particles ranged from 40 to 66% compared with the mean medical mask FFE of 55±2%. Pressure differentials across 2-ply materials ranged from 0.57 to > 12 mm H2O/cm2 on samples of equal surface area with 6 of 16 materials exceeding the recommended medical mask limit. Models were calibrated to predict 2-ply cotton mask FFEs and differential pressures for each fabric based on pore characteristics and fabric weight. Models indicated cotton fabrics from 6 of 9 consumer categories can produce cloth masks with adequate breathability and FFEs equivalent to a medical mask: T-shirt, fashion fabric, mass-market quilting cotton, home décor fabric, bed sheets and high-quality quilting cotton. Masks from one cloth mask and the medical mask were re-tested with a mask fitter to distinguish filtration from leakage. The fabric and medical masks had 3.7% and 41.8% leakage, respectively. These results indicate a well fitted 2-ply cotton mask with overhead ties can perform similarly to a disposable 3-ply medical mask on ear loops due primarily to the superior fit of the cloth mask which compensates for its lower material filtration efficiency.


Subject(s)
COVID-19 , Filtration , Gossypium , Humans , Textiles
2.
Glob Chall ; : 2100052, 2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1358063

ABSTRACT

Public health agencies have recommended the community use of face masks to reduce the transmission of airborne diseases like COVID-19. Virus transmission is reduced when masks act as efficient filters, thus evaluating mask particle filtration efficiency (PFE) is essential. However, the high cost and long lead times associated with purchasing turn-key PFE systems or hiring certified laboratories hampers the testing of filter materials. There is a clear need for "custom" PFE test systems; however, the variety of standards that prescribe (medical) face mask PFE testing (e.g., ASTM International, NIOSH) vary widely in their protocols and clarity of guidelines. Herein, the development is described of an "in-house" PFE system and method for testing face masks in the context of current standards for medical masks. Pursuant to the ASTM International standards, the system uses an aerosol of latex spheres (0.1 µm nominal size) with particle concentrations upstream and downstream of the mask material measured using a laser particle analyzer. PFE measurements are obtained for a variety of common fabrics and medical masks. The approach described in this work conforms to the current standards for PFE testing while providing the flexibility to adapt to changing needs and filtration conditions.

SELECTION OF CITATIONS
SEARCH DETAIL