Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Sensors (Basel) ; 21(23)2021 Nov 23.
Article in English | MEDLINE | ID: covidwho-1560624


Non-contact physiological measurements based on image sensors have developed rapidly in recent years. Among them, thermal cameras have the advantage of measuring temperature in the environment without light and have potential to develop physiological measurement applications. Various studies have used thermal camera to measure the physiological signals such as respiratory rate, heart rate, and body temperature. In this paper, we provided a general overview of the existing studies by examining the physiological signals of measurement, the used platforms, the thermal camera models and specifications, the use of camera fusion, the image and signal processing step (including the algorithms and tools used), and the performance evaluation. The advantages and challenges of thermal camera-based physiological measurement were also discussed. Several suggestions and prospects such as healthcare applications, machine learning, multi-parameter, and image fusion, have been proposed to improve the physiological measurement of thermal camera in the future.

Respiratory Rate , Signal Processing, Computer-Assisted , Algorithms , Heart Rate , Machine Learning
Nat Commun ; 12(1): 5026, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1363491


Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.

Bacteria/isolation & purification , Bacterial Infections/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/isolation & purification , Adolescent , Adult , Bacteria/classification , Bacteria/genetics , Bacterial Infections/epidemiology , Child , Child, Preschool , China/epidemiology , Female , Humans , Infant , Male , Prospective Studies , Respiratory Tract Infections/epidemiology , Seasons , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Young Adult
Infect Dis Poverty ; 10(1): 62, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1220178


BACKGROUND: A local coronavirus disease 2019 (COVID-19) case confirmed on June 11, 2020 triggered an outbreak in Beijing, China after 56 consecutive days without a newly confirmed case. Non-pharmaceutical interventions (NPIs) were used to contain the source in Xinfadi (XFD) market. To rapidly control the outbreak, both traditional and newly introduced NPIs including large-scale management of high-risk populations and expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-based screening in the general population were conducted in Beijing. We aimed to assess the effectiveness of the response to the COVID-19 outbreak in Beijing's XFD market and inform future response efforts of resurgence across regions. METHODS: A modified susceptible-exposed-infectious-recovered (SEIR) model was developed and applied to evaluate a range of different scenarios from the public health perspective. Two outcomes were measured: magnitude of transmission (i.e., number of cases in the outbreak) and endpoint of transmission (i.e., date of containment). The outcomes of scenario evaluations were presented relative to the reality case (i.e., 368 cases in 34 days) with 95% Confidence Interval (CI). RESULTS: Our results indicated that a 3 to 14 day delay in the identification of XFD as the infection source and initiation of NPIs would have caused a 3 to 28-fold increase in total case number (31-77 day delay in containment). A failure to implement the quarantine scheme employed in the XFD outbreak for defined key population would have caused a fivefold greater number of cases (73 day delay in containment). Similarly, failure to implement the quarantine plan executed in the XFD outbreak for close contacts would have caused twofold greater transmission (44 day delay in containment). Finally, failure to implement expanded nucleic acid screening in the general population would have yielded 1.6-fold greater transmission and a 32 day delay to containment. CONCLUSIONS: This study informs new evidence that in form the selection of NPI to use as countermeasures in response to a COVID-19 outbreak and optimal timing of their implementation. The evidence provided by this study should inform responses to future outbreaks of COVID-19 and future infectious disease outbreak preparedness efforts in China and elsewhere.

COVID-19/epidemiology , Beijing/epidemiology , COVID-19/transmission , COVID-19 Testing , China/epidemiology , Epidemiological Monitoring , Humans , Models, Statistical , Pandemics , Quarantine , SARS-CoV-2/isolation & purification