Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Main subject
Year range
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331511


Coughing and sneezing are the main ways of spreading coronavirus-2019 (SARS-CoV-2). Strategically critical facilities such as power plants cannot be shut down even in challenging situations like the COVID-19 outbreak. The personnel of the power plants' control room need to work together at close distances. This study presents the computational fluid dynamics (CFD) simulation results on the dispersion and transport of respiratory droplets emitted by an infected person coughs in a control room with an air ventilation system. This information would be helpful for risk assessment and for developing mitigation measures to prevent the spread of infection. The turbulent airflow in the control room is simulated using the k-ε model. The particle equation of motion included the drag, the Saffman lift, the Brownian, gravity/buoyancy, and thermophoresis forces. The simulation results showed that after 115 s, the cough droplets are dispersed in the entire room, and there is no safe (virus-free) space in the control room. Therefore, a safer design for the ventilation system is proposed by placing the ventilation air inlet and outlet registers across the control room and creating airflow patterns similar to air curtains that divided the room into three compartments.

J Hazard Mater ; 420: 126587, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1307043


In this study, the motion and distribution of droplets containing coronaviruses emitted by coughing of an infected person in front of a classroom (e.g., a teacher) were investigated using CFD. A 3D turbulence model was used to simulate the airflow in the classroom, and a Lagrangian particle trajectory analysis method was used to track the droplets. The numerical model was validated and was used to study the effects of ventilation airflow speeds of 3, 5, and 7 m/s on the dispersion of droplets of different sizes. In particular, the effect of installing transparent barriers in front of the seats on reducing the average droplet concentration was examined. The results showed that using the seat partitions for individuals can prevent the infection to a certain extent. An increase in the ventilation air velocity increased the droplets' velocities in the airflow direction, simultaneously reducing the trapping time of the droplets by solid barriers. As expected, in the absence of partitions, the closest seats to the infected person had the highest average droplet concentration (3.80 × 10-8 kg/m3 for the case of 3 m/s).

COVID-19 , Humans , SARS-CoV-2 , Ventilation