Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Transl Med ; 13(616): eabj1008, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1518118

ABSTRACT

Red blood cells (RBCs) are essential for aerobic respiration through delivery of oxygen to distant tissues. However, RBCs are currently considered immunologically inert, and few, if any, secondary functions of RBCs have been identified. Here, we showed that RBCs serve as critical immune sensors through surface expression of the nucleic acid­sensing Toll-like receptor 9 (TLR9). Mammalian RBCs expressed TLR9 on their surface and bound CpG-containing DNA derived from bacteria, plasmodia, and mitochondria. RBC-bound mitochondrial DNA was increased during human and murine sepsis and pneumonia. In vivo, CpG-carrying RBCs drove accelerated erythrophagocytosis and innate immune activation characterized by increased interferon signaling. Erythroid-specific deletion of TLR9 abrogated erythrophagocytosis and decreased local and systemic cytokine production during CpG-induced inflammation and polymicrobial sepsis. Thus, detection and capture of nucleic acid by TLR9-expressing RBCs regulated red cell clearance and inflammatory cytokine production, demonstrating that RBCs function as immune sentinels during pathologic states. Consistent with these findings, RBC-bound mitochondrial DNA was elevated in individuals with viral pneumonia and sepsis secondary to coronavirus disease 2019 (COVID-19) and associated with anemia and severity of disease. These findings uncover a previously unappreciated role of RBCs as critical players in inflammation distinct from their function in gas transport.


Subject(s)
Anemia , Immunity, Innate , Toll-Like Receptor 9 , Animals , DNA , Erythrocytes , Humans , Mice
2.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1299247

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Subject(s)
COVID-19/complications , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Erythrocytes/immunology , Peptide Fragments/immunology , Respiratory Insufficiency/diagnosis , Sepsis/diagnosis , COVID-19/immunology , COVID-19/virology , Complement C3b/metabolism , Complement C4b/metabolism , Erythrocytes/metabolism , Erythrocytes/virology , Female , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Respiratory Insufficiency/immunology , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Sepsis/immunology , Sepsis/metabolism , Sepsis/virology
SELECTION OF CITATIONS
SEARCH DETAIL