Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1687588

ABSTRACT

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Centers for Disease Control and Prevention, U.S. , Genomics , Humans , Prevalence , Public Health Surveillance/methods , United States/epidemiology
2.
Front Public Health ; 9: 770039, 2021.
Article in English | MEDLINE | ID: covidwho-1686562

ABSTRACT

Background: The COVID-19 pandemic has significantly stressed healthcare systems. The addition of monoclonal antibody (mAb) infusions, which prevent severe disease and reduce hospitalizations, to the repertoire of COVID-19 countermeasures offers the opportunity to reduce system stress but requires strategic planning and use of novel approaches. Our objective was to develop a web-based decision-support tool to help existing and future mAb infusion facilities make better and more informed staffing and capacity decisions. Materials and Methods: Using real-world observations from three medical centers operating with federal field team support, we developed a discrete-event simulation model and performed simulation experiments to assess performance of mAb infusion sites under different conditions. Results: 162,000 scenarios were evaluated by simulations. Our analyses revealed that it was more effective to add check-in staff than to add additional nurses for middle-to-large size sites with ≥2 infusion nurses; that scheduled appointments performed better than walk-ins when patient load was not high; and that reducing infusion time was particularly impactful when load on resources was only slightly above manageable levels. Discussion: Physical capacity, check-in staff, and infusion time were as important as nurses for mAb sites. Health systems can effectively operate an infusion center under different conditions to provide mAb therapeutics even with relatively low investments in physical resources and staff. Conclusion: Simulations of mAb infusion sites were used to create a capacity planning tool to optimize resource utility and allocation in constrained pandemic conditions, and more efficiently treat COVID-19 patients at existing and future mAb infusion sites.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Humans , Pandemics , Workforce
3.
Disaster Med Public Health Prep ; : 1-32, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625403

ABSTRACT

Monoclonal antibody therapeutics to treat COVID-19 have been authorized by the U.S. Food and Drug Administration under Emergency Use Authorization (EUA). Many barriers exist when deploying a novel therapeutic during an ongoing pandemic, and it is critical to assess the needs of incorporating monoclonal antibody infusions into pandemic response activities. We examined the monoclonal antibody infusion site process during the COVID-19 pandemic and conducted a descriptive analysis using data from three sites at medical centers in the U.S. supported by the National Disaster Medical System. Monoclonal antibody implementation success factors included engagement with local medical providers, therapy batch preparation, placing the infusion center in proximity to emergency services, and creating procedures resilient to EUA changes. Infusion process challenges included confirming patient SARS-CoV-2 positivity, strained staff, scheduling, and pharmacy coordination. Infusion sites are effective when integrated into pre-existing pandemic response ecosystems and can be implemented with limited staff and physical resources.

4.
Open Forum Infect Dis ; 8(4): ofab121, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1526172

ABSTRACT

In an outpatient cohort in Maryland, clustering of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity within households was high, with 76% of 74 households reporting at least 1 other symptomatic person and 66% reporting another person who tested SARS-CoV-2 positive. SARS-CoV-2 positivity among household members was associated with larger household size and bedroom sharing.

5.
Clin Infect Dis ; 73(7): e1822-e1829, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455260

ABSTRACT

BACKGROUND: Current mitigation strategies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on the population-wide adoption of nonpharmaceutical interventions (NPIs). Monitoring the adoption of NPIs and their associations with SARS-CoV-2 infection history can provide key information for public health. METHODS: We sampled 1030 individuals in Maryland from 17-28 June 2020 to capture sociodemographically and geographically resolved information about NPI adoption and access to SARS-CoV-2 testing, and examine associations with self-reported SARS-CoV-2 positivity. RESULTS: Overall, 92% reported traveling for essential services and 66% visited friends/family. Use of public transport was reported by 18%. In total, 68% reported strict social distancing indoors and 53% reported strict masking indoors; indoor social distancing was significantly associated with age, and race/ethnicity and income were associated with masking. Overall, 55 participants (5.3%) self-reported ever testing positive for SARS-CoV-2, with strong dose-response relationships between several forms of movement frequency and SARS-CoV-2 positivity. In a multivariable analysis, a history of SARS-CoV-2 infection was negatively associated with strict social distancing (adjusted odds ratio [aOR] for outdoor social distancing, 0.10; 95% confidence interval, .03-.33). Only public transport use (aOR for >7 times vs never, 4.3) and visiting a place of worship (aOR for ≥3 times vs never, 16.0) remained significantly associated with SARS-CoV-2 infection after adjusting for strict social distancing and demographics. CONCLUSIONS: These results support public health messaging that strict social distancing during most activities can reduce SARS-CoV-2 transmission. Additional considerations are needed for indoor activities with large numbers of persons (places of worship and public transportation), where even NPIs may not be possible or sufficient.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Pandemics , Physical Distancing
6.
Open Forum Infect Dis ; 8(8): ofab398, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1364829

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a promising treatment for limiting the progression of coronavirus disease 2019 (COVID-19) and decreasing strain on hospitals. Their use, however, remains limited, particularly in disadvantaged populations. METHODS: Electronic health records were reviewed from SARS-CoV-2 patients at a single medical center in the United States that initiated mAb infusions in January 2021 with the support of the US Department of Health and Human Services' National Disaster Medical System. Patients who received mAbs were compared with untreated patients from the time period before mAb availability who met eligibility criteria for mAb treatment. We used logistic regression to measure the effect of mAb treatment on the risk of hospitalization or emergency department (ED) visit within 30 days of laboratory-confirmed COVID-19. RESULTS: Of 598 COVID-19 patients, 270 (45%) received bamlanivimab and 328 (55%) were untreated. Two hundred thirty-one patients (39%) were Hispanic. Among treated patients, 5/270 (1.9%) presented to the ED or required hospitalization within 30 days of a positive SARS-CoV-2 test, compared with 39/328 (12%) untreated patients (P < .001). After adjusting for age, gender, and comorbidities, the risk of ED visit or hospitalization was 82% lower in mAb-treated patients compared with untreated patients (95% CI, 56%-94%). CONCLUSIONS: In this diverse, real-world COVID-19 patient population, mAb treatment significantly decreased the risk of subsequent ED visit or hospitalization. Broader treatment with mAbs, including in disadvantaged patient populations, can decrease the burden on hospitals and should be facilitated in all populations in the United States to ensure health equity.

SELECTION OF CITATIONS
SEARCH DETAIL