Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329870

ABSTRACT

Despite the discovery of vaccines, control and prevention efforts relied on non-pharmaceutical interventions (NPIs) for the novel Coronavirus disease 2019 (COVID-19). This article describes the process of development and application of the public health law in prevention and control of the COVID-19 pandemic in Uganda. Methods: : A process evaluation of Uganda’s experience with enacting COVID-19 Rules. Briefly, the Public Health Act Chapter 281 (1935) was reviewed each time there was a revision of the NPIs during the COVID-19 outbreak. The study assessed how and what rules were developed, their influence on the outbreak progress and cases of litigation. The data sources were applicable laws and policies, Presidential speeches, cabinet resolutions, statutory instruments, the COVID-19 situation reports and registry of court cases that contributed to a triangulated analysis. Results: : Uganda applied four of COVID-19 broad Rules for the period March to October 2021. These Rules were amended twenty–one (21) times realigned along the pandemic curve, had an expiry period, and were preceded by Presidential pronouncements and directives. The Minister of Health enacted the Rules which were followed by response teams, enforcement agencies, and the general population. The enactment of COVID-19 Rules was necessary but not sufficient to control the pandemic, hence other laws came into play, specifically the Uganda Peoples Defense Forces Act No. 7 of 2005, the Public Finance Management Act No. 3 of 2015, and the National Policy for Disaster Preparedness and Management. Enacting COVID-19 Rules attracted specific litigation arising from perceived infringement on certain human rights provisions. Conclusions: : It is possible for low-income countries to enact supportive legislation within the course of a COVID-19 outbreak. The balance of human rights infringements would be an important consideration in future studies.

2.
JMIR mHealth and uHealth Vol 9(2), 2021, ArtID e22229 ; 9(2), 2021.
Article in English | APA PsycInfo | ID: covidwho-1733063

ABSTRACT

Background: Following the successful scale-up of antiretroviral therapy (ART), the focus is now on ensuring good quality of life (QoL) and sustained viral suppression in people living with HIV. The access to mobile technology in the most burdened countries is increasing rapidly, and therefore, mobile health (mHealth) technologies could be leveraged to improve QoL in people living with HIV. However, data on the impact of mHealth tools on the QoL in people living with HIV are limited to the evaluation of SMS text messaging;these are infeasible in high-illiteracy settings. Objective: The primary and secondary outcomes were to determine the impact of interactive voice response (IVR) technology on Medical Outcomes Study HIV QoL scores and viral suppression at 12 months, respectively. Methods: Within the Call for Life study, ART-experienced and ART-naive people living with HIV commencing ART were randomized (1:1 ratio) to the control (no IVR support) or intervention arm (daily adherence and pre-appointment reminders, health information tips, and option to report symptoms). The software evaluated was Call for Life Uganda, an IVR technology that is based on the Mobile Technology for Community Health open-source software. Eligibility criteria for participation included access to a phone, fluency in local languages, and provision of consent. The differences in differences (DIDs) were computed, adjusting for baseline HIV RNA and CD4. Results: Overall, 600 participants (413 female, 68.8%) were enrolled and followed-up for 12 months. In the intervention arm of 300 participants, 298 (99.3%) opted for IVR and 2 (0.7%) chose SMS text messaging as the mode of receiving reminders and health tips. At 12 months, there was no overall difference in the QoL between the intervention and control arms (DID=0.0;P=.99) or HIV RNA (DID=0.01;P=.94). At 12 months, 124 of the 256 (48.4%) active participants had picked up at least 50% of the calls. In the active intervention participants, high users (received >75% of reminders) had overall higher QoL compared to low users (received <25% of reminders) (92.2 versus 87.8, P=.02). Similarly, high users also had higher QoL scores in the mental health domain (93.1 versus 86.8, P=.008) and better appointment keeping. Similarly, participants with moderate use (51%-75%) had better viral suppression at 12 months (80/94, 85% versus 11/19, 58%, P=.006). Conclusions: Overall, there was high uptake and acceptability of the IVR tool. While we found no overall difference in the QoL and viral suppression between study arms, people living with HIV with higher usage of the tool showed greater improvements n QoL, viral suppression, and appointment keeping. With the declining resources available to HIV programs and the increasing number of people living with HIV accessing ART, IVR technology could be used to support patient care. The tool may be helpful in situations where physical consultations are infeasible, including the current COVID epidemic. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317848

ABSTRACT

BACKGROUND: COVID-19 has become a major global health challenge, with Uganda reporting over 25,000 cases. Frontline healthcare workers (HCWs) are the most at risk population for mental health disorders yet their well-being is key to combating the pandemic. We explored the psychosocial wellbeing and job satisfaction of COVID-19 Frontline HCWs in Uganda. METHODS: This was a qualitative study done at Entebbe regional Referral hospital (ERRH) and Mulago National Referral hospital (MNRH) in September 2020. Data collection was through 3 Focus Group Discussions (FGDs) with 5 participants for each FGD. 2 FGDs were at MNRH and 1 at ERRH. Participants included;doctors, nurses, laboratory personnels, hygienists and a security personnel. Interviews were audio-recorded, transcribed and analyzed thematically using Nvivo version 12 software. RESULTS: Despite the challenges HCWs faced, they were motivated to work when they saw patients recover and go home safely. Participants felt the Pandemic was unprecedented and as a result no person or government was fully prepared. Big unexpected patient crowds caused limited and/ or inconsistent medical supplies. Additionally, Poor Procurement lines affected sufficiency of medical supplies and equipment such as medical gowns, drugs, PPE, alcohol, beds, and COVID-19 testing kits. There was knowledge gap among the HCWs regarding COVID-19 management. This put the staff in a Panic situation hence practicing “trial and error” treatment. Poor remuneration in terms of low or delayed Salary, lack or delay of risk allowance caused dissatisfaction among staff and were affected mentally given that they were involved in risky work yet their families were suffering economically. CONCLUSION: HCWs were remarkably stressed, exhausted and burnt-out due to the heavy workload and inadequate personal protective Equipment. These findings depict a need of creating a conducive environment for these HCWs. Government and ministry should re-strategize on how well to take care of Covid 19 frontline HCWs to save lives.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-305998

ABSTRACT

The emergence of SARS-CoV-2 in China and transmission to more than 80 territories worldwide, including nine countries in Africa, presents a delicate situation for low-resource settings. Countries in Eastern and Central Africa have been on high alert since mid-2018 in anticipation of regional spread of the Ebola virus from the Democratic Republic of Congo. Significant investment has been made to support enhanced surveillance at point of entry and hospitals, infection control practices, clinical case management, and clinical research. With a new threat on the horizon, African countries have an opportunity to leverage the existing capacities for Ebola preparedness to brace for the imminent threat.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-311524

ABSTRACT

Background: There is an urgent unmet clinical need for the identification of novel therapeutics for the treatment of COVID-19. A number of COVID-19 late phase trial platforms have been developed to investigate (often repurposed) drugs both in the UK and globally (e.g. RECOVERY led by the University of Oxford and SOLIDARITY led by WHO). There is a pressing need to investigate novel candidates within early phase trial platforms, from which promising candidates can feed into established later phase platforms. AGILE grew from a UK-wide collaboration to undertake early stage clinical evaluation of candidates for SARS-CoV-2 infection to accelerate national and global healthcare interventions. Methods: /Design: AGILE is a seamless phase I/IIa platform study to establish the optimum dose, determine the activity and safety of each candidate and recommend whether it should be evaluated further. Each candidate is evaluated in its own trial, either as an open label single arm healthy volunteer study or in patients, randomising between candidate and control usually in a 2:1 allocation in favour of the candidate. Each dose is assessed sequentially for safety usually in cohorts of 6 patients. Once a phase II dose has been identified, efficacy is assessed by seamlessly expanding into a larger cohort. AGILE is completely flexible in that the core design in the master protocol can be adapted for each candidate based on prior knowledge of the candidate (i.e. population, primary endpoint and sample size can be amended). This information is detailed in each candidate specific trial protocol of the master protocol. Discussion: Few approved treatments for COVID-19 are available such as dexamethasone, remdesivir and tociluzimab in hospitalised patients. The AGILE platform aims to rapidly identify new efficacious and safe treatments to help end the current global COVID-19 pandemic. We currently have three candidate specific trials within this platform study that are open to recruitment. Trial registrations: EudraCT Number: 2020-001860-27 14th March 2020 ClinicalTrials.gov Identifier: NCT04746183ISRCTN reference: 27106947

6.
Disaster Med Public Health Prep ; : 1-5, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1531948

ABSTRACT

Infectious disease outbreaks on the scale of the current coronavirus disease 2019 (COVID-19) pandemic are a new phenomenon in many parts of the world. Many isolation unit designs with corresponding workflow dynamics and personal protective equipment postures have been proposed for each emerging disease at the health facility level, depending on the mode of transmission. However, personnel and resource management at the isolation units for a resilient response will vary by human resource capacity, reporting requirements, and practice setting. This study describes an approach to isolation unit management at a rural Uganda Hospital and shares lessons from the Uganda experience for isolation unit managers in low- and middle-income settings.

7.
Trials ; 22(1): 831, 2021 Nov 23.
Article in English | MEDLINE | ID: covidwho-1529943

ABSTRACT

BACKGROUND: Remdesivir is a novel broad-spectrum antiviral therapeutic with activity against several viruses that cause emerging infectious diseases. The purpose of this study is to explore how commonly utilized antiretroviral therapy (tenofovir disoproxil fumarate/lamivudine [TDF/3TC] and atazanavir/ritonavir [ATV/r]) influence plasma and intracellular concentrations of remdesivir. METHODS: This is an open-label, randomized, fixed sequence single intravenous dosing study to assess pharmacokinetic interactions between remdesivir and TDF/3TC (Study A, crossover design) or TDF/3TC plus ATV/r (Study B). Healthy volunteers satisfying study entry criteria will be enrolled in the study and randomized to either Study A; N=16 (Sequence 1 or Sequence 2) or Study B; N=8. Participants will receive standard adult doses of antiretroviral therapy for 7 days and a single 200mg remdesivir infusion administered over 60 min. Pharmacokinetic blood sampling will be performed relative to the start of remdesivir infusion; predose (before the start of remdesivir infusion) and 30 min after the start of remdesivir infusion. Additional blood samples will be taken at 2, 4, 6, 12, and 24 h after the end of remdesivir infusion. DISCUSSION: This study will characterize the pharmacokinetics of remdesivir from a typical African population in whom clinical use is anticipated. Furthermore, this study will deliver pharmacokinetic datasets for remdesivir drug concentrations and demographic characteristics which could support pharmacometric approaches for simulation of remdesivir treatment regimens in patients concurrently using tenofovir/lamivudine and/or atazanavir/ritonavir. TRIAL REGISTRATION: ClinicalTrials.gov NCT04385719 . Registered 13 May 2020.


Subject(s)
Anti-HIV Agents , Lamivudine , Adenosine Monophosphate/analogs & derivatives , Adult , Alanine/analogs & derivatives , Atazanavir Sulfate , Healthy Volunteers , Humans , Oligopeptides , Pyridines , Ritonavir , Tenofovir , Uganda
8.
Trials ; 22(1): 487, 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1327946

ABSTRACT

BACKGROUND: There is an urgent unmet clinical need for the identification of novel therapeutics for the treatment of COVID-19. A number of COVID-19 late phase trial platforms have been developed to investigate (often repurposed) drugs both in the UK and globally (e.g. RECOVERY led by the University of Oxford and SOLIDARITY led by WHO). There is a pressing need to investigate novel candidates within early phase trial platforms, from which promising candidates can feed into established later phase platforms. AGILE grew from a UK-wide collaboration to undertake early stage clinical evaluation of candidates for SARS-CoV-2 infection to accelerate national and global healthcare interventions. METHODS/DESIGN: AGILE is a seamless phase I/IIa platform study to establish the optimum dose, determine the activity and safety of each candidate and recommend whether it should be evaluated further. Each candidate is evaluated in its own trial, either as an open label single arm healthy volunteer study or in patients, randomising between candidate and control usually in a 2:1 allocation in favour of the candidate. Each dose is assessed sequentially for safety usually in cohorts of 6 patients. Once a phase II dose has been identified, efficacy is assessed by seamlessly expanding into a larger cohort. AGILE is completely flexible in that the core design in the master protocol can be adapted for each candidate based on prior knowledge of the candidate (i.e. population, primary endpoint and sample size can be amended). This information is detailed in each candidate specific trial protocol of the master protocol. DISCUSSION: Few approved treatments for COVID-19 are available such as dexamethasone, remdesivir and tocilizumab in hospitalised patients. The AGILE platform aims to rapidly identify new efficacious and safe treatments to help end the current global COVID-19 pandemic. We currently have three candidate specific trials within this platform study that are open to recruitment. TRIAL REGISTRATION: EudraCT Number: 2020-001860-27 14 March 2020 ClinicalTrials.gov Identifier: NCT04746183  19 February 2021 ISRCTN reference: 27106947.


Subject(s)
COVID-19 , Pandemics , Cohort Studies , Humans , SARS-CoV-2 , Treatment Outcome
9.
BMJ Glob Health ; 6(6)2021 06.
Article in English | MEDLINE | ID: covidwho-1259005

ABSTRACT

Healthcare workers (HCWs) are at increased risk of infection from SARS-CoV-2 and other disease pathogens, which take a disproportionate toll on HCWs, with substantial cost to health systems. Improved infection prevention and control (IPC) programmes can protect HCWs, especially in resource-limited settings where the health workforce is scarcest, and ensure patient safety and continuity of essential health services. In response to the COVID-19 pandemic, we collaborated with ministries of health and development partners to implement an emergency initiative for HCWs at the primary health facility level in 22 African countries. Between April 2020 and January 2021, the initiative trained 42 058 front-line HCWs from 8444 health facilities, supported longitudinal supervision and monitoring visits guided by a standardised monitoring tool, and provided resources including personal protective equipment (PPE). We documented significant short-term improvements in IPC performance, but gaps remain. Suspected HCW infections peaked at 41.5% among HCWs screened at monitored facilities in July 2020 during the first wave of the pandemic in Africa. Disease-specific emergency responses are not the optimal approach. Comprehensive, sustainable IPC programmes are needed. IPC needs to be incorporated into all HCW training programmes and combined with supportive supervision and mentorship. Strengthened data systems on IPC are needed to guide improvements at the health facility level and to inform policy development at the national level, along with investments in infrastructure and sustainable supplies of PPE. Multimodal strategies to improve IPC are critical to make health facilities safer and to protect HCWs and the communities they serve.


Subject(s)
COVID-19 , Health Personnel , Infectious Disease Transmission, Patient-to-Professional , Pandemics , Primary Health Care , Africa/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Primary Health Care/organization & administration
10.
AAS Open Res ; 3: 3, 2020.
Article in English | MEDLINE | ID: covidwho-532351

ABSTRACT

The emergence of SARS-CoV-2 in China and transmission to more than 80 territories worldwide, including nine countries in Africa, presents a delicate situation for low-resource settings. Countries in Eastern and Central Africa have been on high alert since mid-2018 in anticipation of regional spread of the Ebola virus from the Democratic Republic of Congo. Significant investment has been made to support enhanced surveillance at point of entry and hospitals, infection control practices, clinical case management, and clinical research. With a new threat on the horizon, African countries have an opportunity to leverage the existing capacities for Ebola preparedness to brace for the imminent threat.

11.
J Antimicrob Chemother ; 75(7): 1772-1777, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-154881

ABSTRACT

BACKGROUND: Remdesivir has received significant attention for its potential application in the treatment of COVID-19, caused by SARS-CoV-2. Remdesivir has already been tested for Ebola virus disease treatment and found to have activity against SARS and MERS coronaviruses. The remdesivir core contains GS-441524, which interferes with RNA-dependent RNA polymerases alone. In non-human primates, following IV administration, remdesivir is rapidly distributed into PBMCs and converted within 2 h to the active nucleoside triphosphate form, while GS-441524 is detectable in plasma for up to 24 h. Nevertheless, remdesivir pharmacokinetics and pharmacodynamics in humans are still unexplored, highlighting the need for a precise analytical method for remdesivir and GS-441524 quantification. OBJECTIVES: The validation of a reliable UHPLC-MS/MS method for remdesivir and GS-441524 quantification in human plasma. METHODS: Remdesivir and GS-441524 standards and quality controls were prepared in plasma from healthy donors. Sample preparation consisted of protein precipitation, followed by dilution and injection into the QSight 220 UHPLC-MS/MS system. Chromatographic separation was obtained through an Acquity HSS T3 1.8 µm, 2.1 × 50 mm column, with a gradient of water and acetonitrile with 0.05% formic acid. The method was validated using EMA and FDA guidelines. RESULTS: Analyte stability has been evaluated and described in detail. The method successfully fulfilled the validation process and it was demonstrated that, when possible, sample thermal inactivation could be a good choice in order to improve biosafety. CONCLUSIONS: This method represents a useful tool for studying remdesivir and GS-441524 clinical pharmacokinetics, particularly during the current COVID-19 outbreak.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adenosine Triphosphate/analogs & derivatives , Alanine/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Hemorrhagic Fever, Ebola/drug therapy , Tandem Mass Spectrometry/methods , Adenosine Monophosphate/analysis , Adenosine Monophosphate/blood , Adenosine Monophosphate/pharmacokinetics , Adenosine Triphosphate/analysis , Adenosine Triphosphate/blood , Adenosine Triphosphate/pharmacokinetics , Alanine/analysis , Alanine/blood , Alanine/pharmacokinetics , Betacoronavirus , COVID-19 , Coronavirus Infections/drug therapy , Humans , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL