Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
European Journal of Radiology ; : 110515, 2022.
Article in English | ScienceDirect | ID: covidwho-2007677

ABSTRACT

Purpose To evaluate detection and characterization of groundglass and fibrosis-like opacities imaged by non-contrast 0.55 Tesla MRI, and versus clinically-acquired chest CT images, in a cohort of post-Covid patients. Materials and Methods 64 individuals (26 women, mean age 53 ± 14 years, range 19-85) with history of Covid-19 pneumonia were recruited through a survivorship registry, with 106 non-contrast low-field 0.55T cardiopulmonary MRI exams acquired from 9/8/2020-9/28/2021. MRI exams were obtained at an average interval of 9.5 ± 4.5 months from initial symptom report (range 1-18 months). Of these, 20 participants with 22 MRI exams had corresponding clinically-acquired CT chest imaging obtained within 30 days of MRI (average interval 18 ± 9 days, range 0-30). MR and CT images were reviewed and scored by two thoracic radiologists, for presence and extent of lung opacity by lobe, opacity distribution, and presence versus absence of fibrosis-like subpleural reticulation and subpleural lines. Scoring was performed for each of four lung quadrants: right upper and middle lobe, right lower lobe, left upper lobe and lingula, and left lower lobe. Agreement between readers and modalities was assessed with simple and linear weighted Cohen’s kappa (k) coefficients. Results Inter-reader concordance on CT for opacity presence, opacity extent, opacity distribution, and presence of subpleural lines and reticulation was 99%, 78%, 97%, 99%, and 94% (k 0.96, 0.86, 0.94, 0.97, 0.89), respectively. Inter-reader concordance on MR, among all 106 exams, for opacity presence, opacity extent, opacity distribution, and presence of subpleural lines and reticulation was 85%, 48%, 70%, 86%, and 76% (k 0.57, 0.32, 0.46, 0.47, 0.37), respectively. Inter-modality agreement between CT and MRI for opacity presence, opacity extent, opacity distribution, and presence subpleural lines and reticulation was 86%, 52%, 79%, 93%, and 76% (k 0.43, 0.63, 0.65, 0.80, 0.52). Conclusion Low-field 0.55T non-contrast MRI demonstrates fair to moderate inter-reader concordance, and moderate to substantial inter-modality agreement with CT, for detection and characterization of groundglass and fibrosis-like opacities.

2.
J Clin Med ; 11(14)2022 Jul 13.
Article in English | MEDLINE | ID: covidwho-1938853

ABSTRACT

SARS-CoV-2 may lead to a large spectrum of respiratory manifestations, including pulmonary sequelae. We conducted a single-center longitudinal study of survivors from severe COVID-19 cases who underwent a chest CT during hospitalization (CTH). Three months after being discharged, these patients were evaluated by a clinical examination, pulmonary function tests and a chest-CT scan (CTFU). Sixty-two patients were enrolled. At follow-up, 27% complained of exertional dyspnoea and 12% of cough. Dyspnoeic patients had a lower forced expiratory flow (FEF)25-75 (p = 0.015), while a CT scan (p = 0.016 showed that patients with cough had a higher extent of bronchiectasis. Lung volumes and diffusion of carbon monoxide (DLCO) at follow-up were lower in patients who had been invasively ventilated, which correlated inversely with the length of hospitalization and ground-glass extension at CTH. At follow-up, 14.5% of patients had a complete radiological resolution, while 85.5% presented persistence of ground-glass opacities, and 46.7% showed fibrotic-like alterations. Residual ground-glass at CTFU was related to the length of hospitalization (r = 0.48; p = 0.0002) and to the need for mechanical ventilation or high flow oxygen (p = 0.01) during the acute phase. In conclusion, although patients at three months from discharge showed functional impairment and radiological abnormalities, which correlated with a prolonged hospital stay and need for mechanical ventilation, the persistence of respiratory symptoms was related not to parenchymal but rather to airway sequelae.

3.
Front Immunol ; 13: 842643, 2022.
Article in English | MEDLINE | ID: covidwho-1775676

ABSTRACT

Background: Severity and mortality of COVID-19 largely depends on the ability of the immune system to clear the virus. Among various comorbidities potentially impacting on this process, the weight and the consequences of an antibody deficiency have not yet been clarified. Methods: We used serum protein electrophoresis to screen for hypogammaglobulinemia in a cohort of consecutive adult patients with COVID-19 pneumonia, hospitalized in non-intensive care setting between December 2020 and January 2021. The disease severity, measured by a validated score and by the need for semi intensive (sICU) or intensive care unit (ICU) admission, and the 30-day mortality was compared between patients presenting hypogammaglobulinemia (HYPO) and without hypogammaglobulinemia (no-HYPO). Demographics, comorbidities, COVID-19 specific treatment during the hospital stay, disease duration, complications and laboratory parameters were also evaluated in both groups. Results: We enrolled 374 patients, of which 39 represented the HYPO cohort (10.4%). In 10/39 the condition was previously neglected, while in the other 29/39 hematologic malignancies were common (61.5%); 2/39 were on regular immunoglobulin replacement therapy (IgRT). Patients belonging to the HYPO group more frequently developed a severe COVID-19 and more often required sICU/ICU admission than no-HYPO patients. IgRT were administered in 8/39 during hospitalization; none of them died or needed sICU/ICU. Among HYPO cohort, we observed a significantly higher prevalence of neoplastic affections, of active oncologic treatment and bronchiectasis, together with higher prevalence of viral and bacterial superinfections, mechanical ventilation, convalescent plasma and SARS-CoV-2 monoclonal antibodies administration during hospital stay, and longer disease duration. Multivariate logistic regression analysis and Cox proportional hazard regression confirmed the impact of hypogammaglobulinemia on the COVID-19 severity and the probability of sICU/ICU admission. The analysis of the mortality rate in the whole cohort showed no significant difference between HYPO and no-HYPO. Conclusions: Hypogammaglobulinemia, regardless of its cause, in COVID-19 patients hospitalized in a non-intensive care setting was associated to a more severe disease course and more frequent admission to s-ICU/ICU, particularly in absence of IgRT. Our findings emphasize the add-value of routine serum protein electrophoresis evaluation in patients admitted with COVID-19 to support clinicians in patient care and to consider IgRT initiation during hospitalization.


Subject(s)
Agammaglobulinemia , COVID-19 , Adult , Blood Proteins , COVID-19/therapy , Humans , Immunization, Passive , Retrospective Studies , SARS-CoV-2
4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318409

ABSTRACT

Background: In clinical practice, the striking similarities observed at computed tomography (CT) between the diseases make it difficult to distinguish a COVID-19 pneumonia from a progression of interstitial lung disease (ILD) secondary to Systemic sclerosis (SSc). The aim of the present study was to identify the main CT features that may help distinguishing SSc-ILD from COVID-19 pneumonia. Methods: This multicentric study included 22 international readers divided in the radiologist group (RAD) and non-radiologist group (nRAD). A total of 99 patients, 52 with COVID-19 and 47 with SSc-ILD, were included in the study.Findings: Fibrosis inside focal ground glass opacities (GGO) in the upper lobes;fibrosis in the lower lobe GGO;reticulations in lower lobes (especially if bilateral and symmetrical or associated with signs of fibrosis) were the CT features most frequently associated with SSc-ILD. The CT features most frequently associated with COVID- 19 pneumonia were: consolidation (CONS) in the lower lobes, CONS with peripheral (both central/peripheral or patchy distributions), anterior and posterior CONS and rounded-shaped GGOs in the lower lobes. After multivariate analysis, the presence of CONS in the lower lobes (p <0.0001) and signs of fibrosis in GGO in the lower lobes (p <0.0001) remained independently associated with COVID-19 pneumonia or SSc-ILD, respectively. A predictive score weas created which resulted positively associated with the COVID-19 diagnosis (96.1% sensitivity and 83.3% specificity).Interpretation: The CT differential diagnosis between COVID-19 pneumonia and SSc-ILD is possible through the combination our score and the radiologic expertise. If an overlap of both diseases is suspected, the presence of consolidation in the lower lobes may suggest a COVID-19 pneumonia while the presence of fibrosis inside GGO may indicate a SSc-ILD.Funding: No Funding were received for this study.Declaration of Interests: SC reports personal fees from NOVARTIS-SANOFI-LILLY-CELTHER-PFIZER-JANSSEN;MK reports grants and personal fees from Boehringer-Ingelheim, personal fees from Corbus, grants and personal fees from Chugai, grants and personal fees from Ono Pharmeceuticals, personal fees from Tanabe-Mitsubishi, personal fees from Astellas, personal fees from Gilead, personal fees from Mochida;ST reports personal fees from Boehringer Ingelheim, personal fees from Roche, outside the submitted work;GS reports personal fees from Boehringer Ingelheim;CB reports personal fees from Actelion, personal fees from Eli Lilly, grants from European Scleroderma Trial and Research (EUSTAR) group, grants from New Horizon Fellowship, grants from Foundation for Research in Rheumatology (FOREUM), grants from Fondazione Italiana per la Ricerca sull'Artrite (FIRA);CV reports grants and personal fees from Boehringer Ingelheim, grants and personal fees from F. Hoffmann-La Roche Ltd.;FL reports lectures fee from Roche and from Boehringer- Ingelheim;CPD reports grants and personal fees from GSK, personal fees from Boerhinger Ingelheim, grants from Servier, grants and personal fees from Inventiva, grants and personal fees from Arxx Therapeutics, personal fees from Corbus, personal fees from Sanofi, personal fees from Roche;FL reports grants and personal fees from GSK, personal fees from Boehringer Ingelheim, personal fees from Orion Pharma, personal fees from AstraZeneca, grants from MSD, personal fees from HIKMA, personal fees from Trudell International, grants and personal fees from Chiesi Farmaceutici, personal fees from Novartis Pharma;MH reports personal fees from Speaking fees from Actelion, Eli lilly and Pfizer;D K reports personal fees from Actelion, grants and personal fees from Bayer, grants and personal fees from Boehringer Ingelhem, personal fees from CSL Behring, grants and personal fees from Horizon, grants from Pfizer, personal fees from Corbus, grants and personal fees from BMS, outside the submitted work;and Dr Khanna is the Chief Medical officer of Eicos Sciences Inc and has s ock options. All the mentioned authors declared previous feed outside the submitted work. All other authors declare no competing interests.Ethics Approval Statement: This retrospective, observational, multicentric, international study was approved by the Institutional Ethics Committee of Florence Careggi hospital (protocol number 17104_oss).

5.
Acta Radiol ; : 2841851211055163, 2021 Nov 13.
Article in English | MEDLINE | ID: covidwho-1511628

ABSTRACT

BACKGROUND: Chest radiography (CR) patterns for the diagnosis of COVID-19 have been established. However, they were not ideated comparing CR features with those of other pulmonary diseases. PURPOSE: To create the most accurate COVID-19 pneumonia pattern comparing CR findings of COVID-19 and non-COVID-19 pulmonary diseases and to test the model against the British Society of Thoracic Imaging (BSTI) criteria. MATERIAL AND METHODS: CR of COVID-19 and non-COVID-19 pulmonary diseases, admitted to the emergency department, were evaluated. Assessed features were interstitial opacities, ground glass opacities, and/or consolidations and the predominant lung alteration. We also assessed uni-/bilaterality, location (upper/middle/lower), and distribution (peripheral/perihilar), as well as pleural effusion and perihilar vessels blurring. A binary logistic regression was adopted to obtain the most accurate CR COVID-19 pattern, and sensitivity and specificity were computed. The newly defined pattern was compared to BSTI criteria. RESULTS: CR of 274 patients were evaluated (146 COVID-19, 128 non-COVID-19). The most accurate COVID-19 pneumonia pattern consisted of four features: bilateral alterations (Expß=2.8, P=0.002), peripheral distribution of the predominant (Expß=2.3, P=0.013), no pleural effusion (Expß=0.4, P=0.009), and perihilar vessels' contour not blurred (Expß=0.3, P=0.002). The pattern showed 49% sensitivity, 81% specificity, and 64% accuracy, while BSTI criteria showed 51%, 77%, and 63%, respectively. CONCLUSION: Bilaterality, peripheral distribution of the predominant lung alteration, no pleural effusion, and perihilar vessels contour not blurred determine the most accurate COVID-19 pneumonia pattern. Lower field involvement, proposed by BSTI criteria, was not a distinctive finding. The BSTI criteria has lower specificity.

6.
J Clin Med ; 10(21)2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1480814

ABSTRACT

Pneumothorax (PNX) and pneumomediastinum (PNM) are potential complications of COVID-19, but their influence on patients' outcomes remains unclear. The aim of the study was to assess incidence, risk factors, and outcomes of severe COVID-19 complicated with PNX/PNM. METHODS: A retrospective multicenter case-control analysis was conducted in COVID-19 patients admitted for respiratory failure in intermediate care units of the Treviso area, Italy, from March 2020 to April 2021. Clinical characteristics and outcomes of patients with and without PNX/PNM were compared. RESULTS: Among 1213 patients, PNX and/or PNM incidence was 4.5%. Among these, 42% had PNX and PNM, 33.5% only PNX, and 24.5% only PNM. COVID-19 patients with PNX/PNM showed higher in-hospital (p = 0.02) and 90-days mortality (p = 0.048), and longer hospitalization length (p = 0.002) than COVID-19 patients without PNX/PNM. At PNX/PNM occurrence, one-third of subjects was not mechanically ventilated, and the respiratory support was similar to the control group. PNX/PNM occurrence was associated with longer symptom length before hospital admission (p = 0.005) and lower levels of blood lymphocytes (p = 0.017). CONCLUSION: PNX/PNM are complications of COVID-19 associated with a worse prognosis in terms of mortality and length of hospitalization. Although they are more frequent in ventilated patients, they can occur in non-ventilated, suggesting that mechanisms other than barotrauma might contribute to their presentation.

7.
Rheumatology (Oxford) ; 61(4): 1600-1609, 2022 04 11.
Article in English | MEDLINE | ID: covidwho-1328934

ABSTRACT

OBJECTIVE: The aim of this study was to identify the main CT features that may help in distinguishing a progression of interstitial lung disease (ILD) secondary to SSc from COVID-19 pneumonia. METHODS: This multicentric study included 22 international readers grouped into a radiologist group (RADs) and a non-radiologist group (nRADs). A total of 99 patients, 52 with COVID-19 and 47 with SSc-ILD, were included in the study. RESULTS: Fibrosis inside focal ground-glass opacities (GGOs) in the upper lobes; fibrosis in the lower lobe GGOs; reticulations in lower lobes (especially if bilateral and symmetrical or associated with signs of fibrosis) were the CT features most frequently associated with SSc-ILD. The CT features most frequently associated with COVID- 19 pneumonia were: consolidation (CONS) in the lower lobes, CONS with peripheral (both central/peripheral or patchy distributions), anterior and posterior CONS and rounded-shaped GGOs in the lower lobes. After multivariate analysis, the presence of CONs in the lower lobes (P < 0.0001) and signs of fibrosis in GGOs in the lower lobes (P < 0.0001) remained independently associated with COVID-19 pneumonia and SSc-ILD, respectively. A predictive score was created that was positively associated with COVID-19 diagnosis (96.1% sensitivity and 83.3% specificity). CONCLUSION: CT diagnosis differentiating between COVID-19 pneumonia and SSc-ILD is possible through a combination of the proposed score and radiologic expertise. The presence of consolidation in the lower lobes may suggest COVID-19 pneumonia, while the presence of fibrosis inside GGOs may indicate SSc-ILD.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Scleroderma, Systemic , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19 Testing , Fibrosis , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/etiology , Scleroderma, Systemic/complications , Scleroderma, Systemic/diagnostic imaging , Scleroderma, Systemic/pathology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL