Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Comput Methods Programs Biomed ; 217: 106655, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1654240

ABSTRACT

BACKGROUND: The COVID-19 pandemic affected healthcare systems worldwide. Predictive models developed by Artificial Intelligence (AI) and based on timely, centralized and standardized real world patient data could improve management of COVID-19 to achieve better clinical outcomes. The objectives of this manuscript are to describe the structure and technologies used to construct a COVID-19 Data Mart architecture and to present how a large hospital has tackled the challenge of supporting daily management of COVID-19 pandemic emergency, by creating a strong retrospective knowledge base, a real time environment and integrated information dashboard for daily practice and early identification of critical condition at patient level. This framework is also used as an informative, continuously enriched data lake, which is a base for several on-going predictive studies. METHODS: The information technology framework for clinical practice and research was described. It was developed using SAS Institute software analytics tool and SAS® Vyia® environment and Open-Source environment R ® and Python ® for fast prototyping and modeling. The included variables and the source extraction procedures were presented. RESULTS: The Data Mart covers a retrospective cohort of 5528 patients with SARS-CoV-2 infection. People who died were older, had more comorbidities, reported more frequently dyspnea at onset, had higher d-dimer, C-reactive protein and urea nitrogen. The dashboard was developed to support the management of COVID-19 patients at three levels: hospital, single ward and individual care level. INTERPRETATION: The COVID-19 Data Mart based on integration of a large collection of clinical data and an AI-based integrated framework has been developed, based on a set of automated procedures for data mining and retrieval, transformation and integration, and has been embedded in the clinical practice to help managing daily care. Benefits from the availability of a Data Mart include the opportunity to build predictive models with a machine learning approach to identify undescribed clinical phenotypes and to foster hospital networks. A real-time updated dashboard built from the Data Mart may represent a valid tool for a better knowledge of epidemiological and clinical features of COVID-19, especially when multiple waves are observed, as well as for epidemic and pandemic events of the same nature (e. g. with critical clinical conditions leading to severe pulmonary inflammation). Therefore, we believe the approach presented in this paper may find several applications in comparable situations even at region or state levels. Finally, models predicting the course of future waves or new pandemics could largely benefit from network of DataMarts.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/epidemiology , Clinical Decision-Making , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
2.
EClinicalMedicine ; 27: 100553, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1385448

ABSTRACT

BACKGROUND: Interleukin-6 signal blockade showed preliminary beneficial effects in treating inflammatory response against SARS-CoV-2 leading to severe respiratory distress. Herein we describe the outcomes of off-label intravenous use of Sarilumab in severe SARS-CoV-2-related pneumonia. METHODS: 53 patients with SARS-CoV-2 severe pneumonia received intravenous Sarilumab; pulmonary function improvement or Intensive Care Unit (ICU) admission rate in medical wards, live discharge rate in ICU treated patients and safety profile were recorded. Sarilumab 400 mg was administered intravenously on day 1, with eventual additional infusion based on clinical judgement, and patients were followed for at least 14 days, unless previously discharged or dead. FINDINGS: Of the 53 SARS-CoV-2pos patients receiving Sarilumab, 39(73·6%) were treated in medical wards [66·7% with a single infusion; median PaO2/FiO2:146(IQR:120-212)] while 14(26·4%) in ICU [92·6% with a second infusion; median PaO2/FiO2: 112(IQR:100-141.5)].Within the medical wards, 7(17·9%) required ICU admission, 4 of whom were re-admitted to the ward within 5-8 days. At 19 days median follow-up, 89·7% of medical inpatients significantly improved (46·1% after 24 h, 61·5% after 3 days), 70·6% were discharged from the hospital and 85·7% no longer needed oxygen therapy. Within patients receiving Sarilumab in ICU, 64·2% were discharged from ICU to the ward and 35·8% were still alive at the last follow-up. Overall mortality rate was 5·7%. INTERPRETATION: IL-6R inhibition appears to be a potential treatment strategy for severe SARS-CoV-2 pneumonia and intravenous Sarilumab seems a promising treatment approach showing, in the short term, an important clinical outcome and good safety.

3.
Int J Cardiol ; 338: 278-285, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1275354

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a pandemic disease that is causing a public health emergency. Characteristics and clinical significance of myocardial injury remain unclear. METHODS: This retrospective single-center study analyzed 189 patients who received a COVID-19 diagnosis out of all 758 subjects with a high sensitive troponin I (Hs-TnI) measurement within the first 24 h of admission at the Policlinico A.Gemelli (Rome, Italy) between February 20th 2020 to April 09th 2020. RESULTS: The prevalence of myocardial injury in our COVID-19 population is of 16%. The patients with cardiac injury were older, had a greater number of cardiovascular comorbidities and higher values of acute phase and inflammatory markers and leucocytes. They required more frequently hospitalization in Intensive Care Unit (10 [32.3%] vs 18 [11.4%]; p = .003) and the mortality rate was significantly higher (17 [54.8%] vs. 15 [9.5%], p < .001). Among patients in ICU, the subjects with myocardial injury showed an increase need of endotracheal intubation (8 out of 9 [88%] vs 7 out of 19[37%], p = .042). Multivariate analyses showed that hs-TnI can significantly predict the degree of COVID-19 disease, the intubation need and in-hospital mortality. CONCLUSIONS: In this study we demonstrate that hs-Tn can significantly predict disease severity, intubation need and in-hospital death. Therefore, it may be reasonable to use Hs-Tn as a clinical tool in COVID-19 patients in order to triage them into different risk groups and can play a pivotal role in the detection of subjects at high risk of cardiac impairment during both the early and recovery stage.


Subject(s)
COVID-19 , Pandemics , COVID-19 Testing , Hospital Mortality , Humans , Italy/epidemiology , Prevalence , Retrospective Studies , Rome , SARS-CoV-2 , Troponin
4.
Int J Mol Sci ; 21(21)2020 Oct 30.
Article in English | MEDLINE | ID: covidwho-983342

ABSTRACT

The 2019 novel coronavirus [2019-nCoV], which started to spread from December 2019 onwards, caused a global pandemic. Besides being responsible for the severe acute respiratory syndrome 2 [SARS-CoV-2], the virus can affect other organs causing various symptoms. A close relationship between SARS-CoV-2 and the cardiovascular system has been shown, demonstrating an epidemiological linkage between SARS-CoV-2 and cardiac injury. There are emerging data regarding possible direct myocardial damage by 2019-nCoV. In this review, the most important available evidences will be discussed to clarify the precise mechanisms of cardiovascular injury in SARS-CoV-2 patients, even if further researches are needed.


Subject(s)
Cardiovascular Diseases/etiology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Animals , Betacoronavirus/immunology , COVID-19 , Cardiovascular Diseases/epidemiology , Coronavirus Infections/immunology , Humans , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
5.
International Journal of Molecular Sciences ; 21(21):8141, 2020.
Article in English | MDPI | ID: covidwho-896209

ABSTRACT

The 2019 novel coronavirus [2019-nCoV], which started to spread from December 2019 onwards, caused a global pandemic. Besides being responsible for the severe acute respiratory syndrome 2 [SARS-CoV-2], the virus can affect other organs causing various symptoms. A close relationship between SARS-CoV-2 and the cardiovascular system has been shown, demonstrating an epidemiological linkage between SARS-CoV-2 and cardiac injury. There are emerging data regarding possible direct myocardial damage by 2019-nCoV. In this review, the most important available evidences will be discussed to clarify the precise mechanisms of cardiovascular injury in SARS-CoV-2 patients, even if further researches are needed.

6.
Trials ; 21(1): 875, 2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-886002

ABSTRACT

OBJECTIVES: The primary objective is to demonstrate that COVID-19 convalescent plasma (CCP) prevents progression to severe pneumonia in elderly COVID-19 pneumonia patients with chronic comorbidities. Secondary objectives are to demonstrate that CCP decreases the viral load in nasopharyngeal swabs and increases the anti-SARS-CoV-2 antibody titre in recipients. TRIAL DESIGN: This is a randomized, open-label, parallel group, phase II/III study with a superiority framework. The trial starts with a screening phase II designed with two-tailed alpha=0.2. In case of positive results, the trial will proceed in a formally comparative phase III (alpha=0.05). PARTICIPANTS: Adult patients with confirmed or suspected COVID-19 who are at risk according to CDC definition are eligible. Inclusion criteria are all the following: age ≥ 65; pneumonia at CT scan; PaO2/FiO2 ≥300 mmHg; presence of one or more comorbidities; signed informed consent. Exclusion criteria are one of the following: age < 65; PaO2/FiO2 < 300 mmHg; pending cardiopulmonary arrest; refusal to blood product transfusions; severe IgA deficiency; any life-threatening comorbidity or any other medical condition which, in the opinion of the investigator, makes the patient unsuitable for inclusion. The trial is being conducted at three reference COVID-19 centres in the middle of Italy. INTERVENTION AND COMPARATOR: Intervention: COVID-19 Convalescent Plasma (CCP) in addition to standard therapy. Patients receive three doses (200 ml/day on 3 consecutive days) of ABO matched CCP. Comparator: Standard therapy MAIN OUTCOMES: A. Primary outcome for Phase II: Proportion of patients without progression in severity of pulmonary disease, defined as worsening of 2 points in the ordinal scale of WHO by day 14. B. Primary outcome for Phase III: Proportion of patients without progression in severity of pulmonary disease, defined as worsening of 2 points in the ordinal scale of WHO by day 14. Secondary outcomes for Phase III: Decreased viral load on nasopharyngeal swab at days 6, 9 and 14; Decreased viremia at days 6 and 9; Increased antibody titer against SARS-CoV2 at days 30 and 60; Proportion of patients with negative of SARS-CoV2 nasopharyngeal swab at day 30; Length of hospital stay; Mortality rate at day 28; Total plasma related adverse event (day 60); Total non-plasma related adverse events (day 60); Severe adverse events (SAE) (day 60). RANDOMISATION: Treatment allocation is randomized with a ratio 1:1 in both phase II and phase III. Randomization sequences will be generated at Fondazione Policlinico Gemelli IRCCS through the RedCap web application. Randomized stratification is performed according to age (under/over 80 years), and sex. BLINDING (MASKING): None, this is an open-label trial. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Phase II: 114 patients (57 per arm). Phase III: 182 patients (91 per arm) TRIAL STATUS: The trial recruitment started on May 27, 2020. The anticipated date of recruitment completion is April 30, 2021. The protocol version is 2 (May 10, 2020). TRIAL REGISTRATION: The trial has been registered on ClinicalTrials.gov (May 5, 2020). The Identifier number is NCT04374526 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus/genetics , Blood Transfusion/methods , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Aged , Aged, 80 and over , Betacoronavirus/immunology , COVID-19 , Comorbidity , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Progression , Female , Humans , Immunization, Passive/adverse effects , Immunization, Passive/methods , Informed Consent/ethics , Italy/epidemiology , Male , Mortality/trends , Pandemics , Pneumonia/diagnostic imaging , Pneumonia/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Tomography, X-Ray Computed/methods , Viral Load/immunology , Viral Load/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL