Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 13(4)2021 04 02.
Article in English | MEDLINE | ID: covidwho-1167762

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 and is responsible for the ongoing pandemic. Screening of potential antiviral drugs against SARS-CoV-2 depend on in vitro experiments, which are based on the quantification of the virus titer. Here, we used virus-induced cytopathic effects (CPE) in brightfield microscopy of SARS-CoV-2-infected monolayers to quantify the virus titer. Images were classified using deep transfer learning (DTL) that fine-tune the last layers of a pre-trained Resnet18 (ImageNet). To exclude toxic concentrations of potential drugs, the network was expanded to include a toxic score (TOX) that detected cell death (CPETOXnet). With this analytic tool, the inhibitory effects of chloroquine, hydroxychloroquine, remdesivir, and emetine were validated. Taken together we developed a simple method and provided open access implementation to quantify SARS-CoV-2 titers and drug toxicity in experimental settings, which may be adaptable to assays with other viruses. The quantification of virus titers from brightfield images could accelerate the experimental approach for antiviral testing.


Subject(s)
Antiviral Agents/pharmacology , Deep Learning , Drug Evaluation, Preclinical/methods , Drug-Related Side Effects and Adverse Reactions , Machine Learning , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Animals , COVID-19 , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins , Phosphoproteins , Vero Cells , Viral Load/drug effects
2.
Cell Rep Med ; 1(8): 100142, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-894264

ABSTRACT

The acid sphingomyelinase/ceramide system plays an important role in bacterial and viral infections. Here, we report that either pharmacological inhibition of acid sphingomyelinase with amitriptyline, imipramine, fluoxetine, sertraline, escitalopram, or maprotiline or genetic downregulation of the enzyme prevents infection of cultured cells or freshy isolated human nasal epithelial cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or vesicular stomatitis virus (VSV) pseudoviral particles (pp-VSV) presenting SARS-CoV-2 spike protein (pp-VSV-SARS-CoV-2 spike), a bona fide system mimicking SARS-CoV-2 infection. Infection activates acid sphingomyelinase and triggers a release of ceramide on the cell surface. Neutralization or consumption of surface ceramide reduces infection with pp-VSV-SARS-CoV-2 spike. Treating volunteers with a low dose of amitriptyline prevents infection of freshly isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike. The data justify clinical studies investigating whether amitriptyline, a safe drug used clinically for almost 60 years, or other antidepressants that functionally block acid sphingomyelinase prevent SARS-CoV-2 infection.


Subject(s)
Epithelial Cells/drug effects , SARS-CoV-2/drug effects , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Amitriptyline/pharmacology , Animals , Antidepressive Agents/pharmacology , Ceramides/antagonists & inhibitors , Ceramides/metabolism , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Neutral Ceramidase/pharmacology , SARS-CoV-2/physiology , Sphingomyelin Phosphodiesterase/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Vesicular stomatitis Indiana virus/genetics
4.
mBio ; 11(3)2020 06 23.
Article in English | MEDLINE | ID: covidwho-612678

ABSTRACT

It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 "don't eat me" signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents.IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.


Subject(s)
Betacoronavirus/immunology , CD47 Antigen/metabolism , Immunomodulation/immunology , Receptors, Pattern Recognition/immunology , A549 Cells , Adaptive Immunity/immunology , Animals , CD47 Antigen/genetics , Cell Line, Tumor , Cytokines/immunology , Female , Humans , Immunity, Innate/immunology , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/immunology , SARS-CoV-2 , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL