Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Med Hypotheses ; 146: 110396, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1386308

ABSTRACT

We have reviewed a considerable amount of recent scientific papers relating inflammation caused by air pollution with chronic and severe medical conditions. Furthermore, there are evidences relating organ inflammation caused by not only outdoor long-term but also short-term inhaled radioisotopes contained in high polluted air or in household natural radioactive background aerosols, in addition to SARS-COV-2 attached to bioaerosols, which are related with a worst evolution of severe acute respiratory syndrome patients. Reactive oxygen species (ROS) production induced by the interaction with environmental ionizing radiation contained in pollution is pointed out as a critical mechanism that predispose mainly to elder population, but not excluding young subjects, presenting previous chronic conditions of lung inflammation or neuroinflammation, which can lead to the most serious consequences.


Subject(s)
Air Pollution, Radioactive/adverse effects , COVID-19/etiology , Climate Change , Inflammation/etiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/pathogenicity , Aerosols , Air Microbiology , COVID-19/mortality , Causality , Humans , Inflammasomes/metabolism , Inflammasomes/radiation effects , Models, Biological , Nervous System Diseases/etiology , Pandemics , Particle Size , Particulate Matter/adverse effects , Pneumonia/etiology
2.
Radiother Oncol ; 160: 125-131, 2021 07.
Article in English | MEDLINE | ID: covidwho-1209638

ABSTRACT

Novel mechanistic insights are discussed herein that link a single, nontoxic, low-dose radiotherapy (LDRT) treatment (0.5-1.0 Gy) to (1) beneficial subcellular effects mediated by the activation of nuclear factor erythroid 2-related transcription factor (Nrf2) and to (2) favorable clinical outcomes for COVID-19 pneumonia patients displaying symptoms of acute respiratory distress syndrome (ARDS). We posit that the favorable clinical outcomes following LDRT result from potent Nrf2-mediated antioxidant responses that rebalance the oxidatively skewed redox states of immunological cells, driving them toward anti-inflammatory phenotypes. Activation of Nrf2 by ionizing radiation is highly dose dependent and conforms to the features of a biphasic (hormetic) dose-response. At the cellular and subcellular levels, hormetic doses of <1.0 Gy induce polarization shifts in the predominant population of lung macrophages, from an M1 pro-inflammatory to an M2 anti-inflammatory phenotype. Together, the Nrf2-mediated antioxidant responses and the subsequent shifts to anti-inflammatory phenotypes have the capacity to suppress cytokine storms, resolve inflammation, promote tissue repair, and prevent COVID-19-related mortality. Given these mechanistic considerations-and the historical clinical success of LDRT early in the 20th century-we opine that LDRT should be regarded as safe and effective for use at almost any stage of COVID-19 infection. In theory, however, optimal life-saving potential is thought to occur when LDRT is applied prior to the cytokine storms and before the patients are placed on mechanical oxygen ventilators. The administration of LDRT either as an intervention of last resort or too early in the disease progression may be far less effective in saving the lives of ARDS patients.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cytokine Release Syndrome , Humans , NF-E2-Related Factor 2 , SARS-CoV-2
3.
Aging Dis ; 11(4): 756-762, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-696061

ABSTRACT

Age is one of the most important prognostic factors associated to lethality in SARS-CoV-2 infection. In multivariate analysis, advanced age was an independent risk factor for death. Recent studies suggest a role for the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome activation in lung inflammation and fibrosis in SARS-CoV and SARS-CoV-2 infections. Increased NLRP3/ apoptosis-associated speck-like protein (ASC) mRNA expression and increased caspase-1 activity, have been observed in aged lung, provoking increased and heightened expression levels of mature Interleukin (IL)-1ß and IL-18 in aged individuals. Aged individuals have a basal predisposition to over-react to infection, displaying an increased hyper-inflammatory cascade, that seems not to be fully physiologically controlled. NLRP3 inflammasome is over-activated in aged individuals, through deficient mitochondrial functioning, increased mitochondrial Reactive Oxigen Species (mtROS) and/or mitochondrial (mt)DNA, leading to a hyper-response of classically activated macrophages and subsequent increases in IL-1 ß. This NLRP3 over-activated status in elderly individuals, is also observed in telomere dysfunctional mice models. In our opinion, the NLRP3 inflammasome plays a central role in the increased lethality observed in elderly patients infected by COVID-19. Strategies blocking inflammasome would deserve to be studied.

4.
Aging Dis ; 11(3): 489-493, 2020 May.
Article in English | MEDLINE | ID: covidwho-458970

ABSTRACT

A cytokine storm induced by SARS-Cov2 may produce pneumonitis which may be fatal for older patients with underlying lung disease. Hyper-elevation of Interleukin1 (IL-1), Tumor necrosis factor-1alfa (TNF-1 alfa), and Interleukin 6 (IL-6) produced by inflammatory macrophage M1 may damage the lung alveoli leading to severe pneumonitis, decreased oxygenation, and potential death despite artificial ventilation. Older patients may not be suitable candidates for pharmaceutical intervention targeting IL-1/6 blockade or artificial ventilation. Low dose total lung (LDTL) irradiation at a single dose of 50 cGy may stop this cytokine cascade, thus preventing, and/or reversing normal organs damage. This therapy has been proven in the past to be effective against pneumonitis of diverse etiology and could be used to prevent death of older infected patients. Thus, LDRT radiotherapy may be a cost-effective treatment for this frail patient population whom radiation -induced malignancy is not a concern because of their advanced age. This hypothesis should be tested in future prospective trials.

5.
Clin Transl Radiat Oncol ; 23: 27-29, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-125376

ABSTRACT

The COVID-19 pandemia is affecting people worldwide. Most of the patients suffered of a respiratory disease that will progress to an acute respiratory distress syndrome (ARDS). SARS-CoV-2 pneumonia severely ill patients, develop a systemic inflammatory response with a Cytokine Release Syndrome (CRS), that is characterized by a sudden increase in several pro-inflammatory cytokines, mainly IL-1, IL-6 and TNF-alfa by activated macrophages (M1 phenotype). Blocking IL-6 with tocilizumab and using respirator equipment seems to be a very important issue in this (SARS-CoV-2) pneumonia, but not all patients are referred to such treatments. Low dose radiotherapy (0,5 Gy), is an evidence-based anti-inflammatory treatment, that could modify the immune landscape in the lung affected of SARS-CoV-2 pneumonia, through macrophages polarization to alternatively activated Macrophages (M2 phenotype). Radiation-induced cancer risk could be assumed due to the very low dose used, the advanced age of the patients and the life-threatening condition of SARS-Cov2 pneumonia. LDRT is a cost-effective non-toxic treatment already available in most general hospitals. This fact allows that it would be used for the large number of patients that will suffer this disease, and that would not receive specific anti-IL-6 treatments in ICUs in low and middle income countries.

SELECTION OF CITATIONS
SEARCH DETAIL