Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 11(1): 18285, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410888

ABSTRACT

Serological assays intended for diagnosis, sero-epidemiologic assessment, and measurement of protective antibody titers upon infection or vaccination are essential for managing the SARS-CoV-2 pandemic. Serological assays measuring the antibody responses against SARS-CoV-2 antigens are readily available. However, some lack appropriate characteristics to accurately measure SARS-CoV-2 antibodies titers and neutralization. We developed an Enzyme-linked Immunosorbent Assay (ELISA) methods for measuring IgG, IgA, and IgM responses to SARS-CoV-2, Spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins. Performance characteristics of sensitivity and specificity have been defined. ELISA results show positive correlation with microneutralization and Plaque Reduction Neutralization assays with infectious SARS-CoV-2. Our ELISA was used to screen healthcare workers in Louisville, KY during the first wave of the local pandemic in the months of May and July 2020. We found a seropositive rate of approximately 1.4% and 2.3%, respectively. Our analyses demonstrate a broad immune response among individuals and suggest some non-RBD specific S IgG and IgA antibodies neutralize SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Area Under Curve , COVID-19/blood , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Kentucky/epidemiology , Pandemics , Phosphoproteins/immunology , ROC Curve , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
2.
Sci Rep ; 11(1): 15715, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1341011

ABSTRACT

Key elements for viral pathogenesis include viral strains, viral load, co-infection, and host responses. Several studies analyzing these factors in the function of disease severity of have been published; however, no studies have shown how all of these factors interplay within a defined cohort. To address this important question, we sought to understand how these four key components interplay in a cohort of COVID-19 patients. We determined the viral loads and gene expression using high throughput sequencing and various virological methods. We found that viral loads in the upper respiratory tract in COVID-19 patients at an early phase of infection vary widely. While the majority of nasopharyngeal (NP) samples have a viral load lower than the limit of detection of infectious viruses, there are samples with an extraordinary amount of SARS-CoV-2 RNA and a high viral titer. No specific viral factors were identified that are associated with high viral loads. Host gene expression analysis showed that viral loads were strongly correlated with cellular antiviral responses. Interestingly, however, COVID-19 patients who experience mild symptoms have a higher viral load than those with severe complications, indicating that naso-pharyngeal viral load may not be a key factor of the clinical outcomes of COVID-19. The metagenomics analysis revealed that the microflora in the upper respiratory tract of COVID-19 patients with high viral loads were dominated by SARS-CoV-2, with a high degree of dysbiosis. Finally, we found a strong inverse correlation between upregulation of interferon responses and disease severity. Overall our study suggests that a high viral load in the upper respiratory tract may not be a critical factor for severe symptoms; rather, dampened antiviral responses may be a critical factor for a severe outcome from the infection.


Subject(s)
COVID-19/pathology , Interferons/metabolism , SARS-CoV-2/genetics , Adult , Aged , COVID-19/virology , Dysbiosis/etiology , Female , Humans , Male , Metagenomics , Microbiota/genetics , Middle Aged , Nasopharynx/virology , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction , Respiratory System/microbiology , Respiratory System/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Transcriptome , Up-Regulation , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL