Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
J Med Microbiol ; 71(11)2022 Nov.
Article in English | MEDLINE | ID: covidwho-2107718


Introduction. Coronavirus disease 2019 (COVID-19) identified in December 2019 in Wuhan, China, is associated with high mortality rates worldwide.Hypothesis/Gap Statement. Thrombotic problems, such as coagulopathy, are common in COVID-19 patients. Despite anticoagulation, thrombosis is more common in patients in the intensive care unit and patients with more severe disease. Although the exact mechanisms of coagulopathy in COVID-19 patients are still unclear, studies showed that overactivation of the renin-angiotensin system (RAS), cytokine storm, endothelial damage, formation of neutrophil extracellular traps (NETs), and also extracellular vesicles (EVs) in response to COVID-19 induced inflammation can lead to systemic coagulation and thrombosis.Aim. The management of COVID-19 patients requires the use of basic and readily available laboratory markers, both on admission and during hospitalization. Because it is critical to understand the pathophysiology of COVID-19 induced coagulopathy and treatment strategies, in this review we attempt to explain the underlying mechanism of COVID-19 coagulopathy, its diagnosis, and the associated successful treatment strategies.Conclusion. The exact mechanisms behind COVID-19-related coagulopathy are still unclear, but several studies revealed some mechanisms. More research is needed to determine the best anticoagulant regimen and to study other therapeutic options.

COVID-19 , Thrombosis , Humans , COVID-19/complications , SARS-CoV-2 , Thrombosis/drug therapy , Anticoagulants/therapeutic use , China
Mol Biol Rep ; 49(1): 647-656, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1465893


The severe acute respiratory syndrome (SARS-CoV-2), a newly emerging of coronavirus, continues to infect humans in the absence of a viable treatment. Neutralizing antibodies that disrupt the interaction of RBD and ACE2 has been under the spotlight as a way of developing the COVID-19 treatment. Some animals, such as llamas, manufacture heavy-chain antibodies that have a single variable domain (VHH) instead of two variable domains (VH/VL) as opposed to typical antibodies. Nanobodies are antigen-specific, single-domain, changeable segments of camelid heavy chain-only antibodies that are recombinantly produced. These types of antibodies exhibit a wide range of strong physical and chemical properties, like high solubility, and stability. The VHH's high-affinity attachment to the receptor-binding domain (RBD) allowed the neutralization of SARS-CoV-2. To tackle COVID-19, some nanobodies are being developed against SARS-CoV-2, some of which have been recently included in clinical trials. Nanobody therapy may be useful in managing the COVID-19 pandemic as a potent and low-cost treatment. This paper describes the application of nanobodies as a new class of recombinant antibodies in COVID-19 treatment.

COVID-19/drug therapy , Single-Domain Antibodies , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/therapy , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
Rev Neurosci ; 32(3): 351-361, 2021 04 27.
Article in English | MEDLINE | ID: covidwho-1067453


The ongoing pandemic of Coronavirus disease 2019 (COVID-19) has infected more than 27 million confirmed cases and 8,90,000 deaths all around the world. Verity of viral infections can infect the nervous system; these viral infections can present a wide range of manifestation. The aim of the current study was to systematically review the COVID-19 associated central nervous system manifestations, mental and neurological symptoms. For that we conducted a comprehensive systematic literature review of four online databases, including Web of Science, PubMed, Scopus and Embase. All relevant articles that reported psychiatric/psychological symptoms or disorders in COVID-19 without considering time and language restrictions were assessed. All the study procedures were performed based on the PRISMA criteria. Due to the screening, 14 studies were included. The current study result indicated that, the pooled prevalence of CNS or mental associated disorders with 95% CI was 50.68% (6.68-93.88). The most prevalence symptoms were hyposmia/anosmia/olfactory dysfunction (number of study: 10) with 36.20% (14.99-60.51). Only one study reported numbness/paresthesia and dysphonia. Pooled prevalence of numbness/paresthesia and dysphonia was 5.83% (2.17-12.25) and 2.39% (10.75-14.22). The pooled prevalence of depression and anxiety was 3.52% (2.62-4.54) and 13.92% (9.44-19.08). Our findings demonstrate that COVID-19 has a certain relation with neurological symptoms. The hypsomia, anosmia or olfactory dysfunction was most frequent symptom. Other symptoms were headache or dizziness, dysgeusia or ageusia, dysphonia and fatigue. Depression, anxiety, and confusion were less frequent symptoms.

Anosmia/epidemiology , Anxiety/epidemiology , COVID-19/physiopathology , Depression/epidemiology , Anosmia/physiopathology , Anxiety/psychology , COVID-19/psychology , Depression/psychology , Dysgeusia/epidemiology , Dysgeusia/physiopathology , Dysphonia/epidemiology , Dysphonia/physiopathology , Fatigue/epidemiology , Fatigue/physiopathology , Headache/epidemiology , Headache/physiopathology , Humans , Hypesthesia/epidemiology , Hypesthesia/physiopathology , Nervous System Diseases/epidemiology , Nervous System Diseases/physiopathology , Paresthesia/epidemiology , Paresthesia/physiopathology , Prevalence , SARS-CoV-2