Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Commun ; 13(1): 5870, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2050380

ABSTRACT

Population testing remains central to COVID-19 control and surveillance, with countries increasingly using antigen tests rather than molecular tests. Here we describe a SARS-CoV-2 variant that escapes N antigen tests due to multiple disruptive amino-acid substitutions in the N protein. By fitting a multistrain compartmental model to genomic and epidemiological data, we show that widespread antigen testing in the Italian region of Veneto favored the undetected spread of the antigen-escape variant compared to the rest of Italy. We highlight novel limitations of widespread antigen testing in the absence of molecular testing for diagnostic or confirmatory purposes. Notably, we find that genomic surveillance systems which rely on antigen population testing to identify samples for sequencing will bias detection of escape antigen test variants. Together, these findings highlight the importance of retaining molecular testing for surveillance purposes, including in contexts where the use of antigen tests is widespread.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Italy/epidemiology , SARS-CoV-2/genetics
2.
Genome Med ; 14(1): 61, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1951320

ABSTRACT

BACKGROUND: The continuous emergence of SARS-CoV-2 variants of concern (VOC) with immune escape properties, such as Delta (B.1.617.2) and Omicron (B.1.1.529), questions the extent of the antibody-mediated protection against the virus. Here we investigated the long-term antibody persistence in previously infected subjects and the extent of the antibody-mediated protection against B.1, B.1.617.2 and BA.1 variants in unvaccinated subjects previously infected, vaccinated naïve and vaccinated previously infected subjects. METHODS: Blood samples collected 15 months post-infection from unvaccinated (n=35) and vaccinated (n=41) previously infected subjects (Vo' cohort) were tested for the presence of antibodies against the SARS-CoV-2 spike (S) and nucleocapsid (N) antigens using the Abbott, DiaSorin, and Roche immunoassays. The serum neutralising reactivity was assessed against B.1, B.1.617.2 (Delta), and BA.1 (Omicron) SARS-CoV-2 strains through micro-neutralisation. The antibody titres were compared to those from previous timepoints, performed at 2- and 9-months post-infection on the same individuals. Two groups of naïve subjects were used as controls, one from the same cohort (unvaccinated n=29 and vaccinated n=20) and a group of vaccinated naïve healthcare workers (n=61). RESULTS: We report on the results of the third serosurvey run in the Vo' cohort. With respect to the 9-month time point, antibodies against the S antigen significantly decreased (P=0.0063) among unvaccinated subjects and increased (P<0.0001) in vaccinated individuals, whereas those against the N antigen decreased in the whole cohort. When compared with control groups (naïve Vo' inhabitants and naïve healthcare workers), vaccinated subjects that were previously infected had higher antibody levels (P<0.0001) than vaccinated naïve subjects. Two doses of vaccine elicited stronger anti-S antibody response than natural infection (P<0.0001). Finally, the neutralising reactivity of sera against B.1.617.2 and BA.1 was 4-fold and 16-fold lower than the reactivity observed against the original B.1 strain. CONCLUSIONS: These results confirm that vaccination induces strong antibody response in most individuals, and even stronger in previously infected subjects. Neutralising reactivity elicited by natural infection followed by vaccination is increasingly weakened by the recent emergence of VOCs. While immunity is not completely compromised, a change in vaccine development may be required going forward, to generate cross-protective pan-coronavirus immunity in the global population.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
3.
Front Microbiol ; 13: 915069, 2022.
Article in English | MEDLINE | ID: covidwho-1928436

ABSTRACT

The DNA secondary structures that deviate from the classic Watson and Crick base pairing are increasingly being reported to form transiently in the cell and regulate specific cellular mechanisms. Human viruses are cell parasites that have evolved mechanisms shared with the host cell to support their own replication and spreading. Contrary to human host cells, viruses display a diverse array of nucleic acid types, which include DNA or RNA in single-stranded or double-stranded conformations. This heterogeneity improves the possible occurrence of non-canonical nucleic acid structures. We have previously shown that human virus genomes are enriched in G-rich sequences that fold in four-stranded nucleic acid secondary structures, the G-quadruplexes.Here, by extensive bioinformatics analysis on all available genomes, we showed that human viruses are enriched in highly conserved multiple A (and T or U) tracts, with such an array that they could in principle form quadruplex structures. By circular dichroism, NMR, and Taq polymerase stop assays, we proved that, while A/T/U-quadruplexes do not form, these tracts still display biological significance, as they invariably trigger polymerase pausing within two bases from the A/T/U tract. "A" bases display the strongest effect. Most of the identified A-tracts are in the coding strand, both at the DNA and RNA levels, suggesting their possible relevance during viral translation. This study expands on the presence and mechanism of nucleic acid secondary structures in human viruses and provides a new direction for antiviral research.

4.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: covidwho-1794307

ABSTRACT

T cells play a prominent role in orchestrating the immune response to viral diseases, but their role in the clinical presentation and subsequent immunity to SARS-CoV-2 infection remains poorly understood. As part of a population-based survey of the municipality of Vo', Italy, conducted after the initial SARS-CoV-2 outbreak, we sampled the T cell receptor (TCR) repertoires of the population 2 months after the initial PCR survey and followed up positive cases 9 and 15 months later. At 2 months, we found that 97.0% (98 of 101) of cases had elevated levels of TCRs associated with SARS-CoV-2. T cell frequency (depth) was increased in individuals with more severe disease. Both depth and diversity (breadth) of the TCR repertoire were positively associated with neutralizing antibody titers, driven mostly by CD4+ T cells directed against spike protein. At the later time points, detection of these TCRs remained high, with 90.7% (78 of 96) and 86.2% (25 of 29) of individuals having detectable signal at 9 and 15 months, respectively. Forty-three individuals were vaccinated by month 15 and showed a significant increase in TCRs directed against spike protein. Taken together, these results demonstrate the central role of T cells in mounting an immune defense against SARS-CoV-2 that persists out to 15 months.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331841

ABSTRACT

Population testing remains central to COVID-19 control and surveillance, with countries increasingly using antigen tests rather than molecular tests. Here we describe a SARS-CoV-2 variant that escapes N antigen tests due to multiple disruptive amino-acid substitutions in the N protein. By fitting a multistrain compartmental model to genomic and epidemiological data, we show that widespread antigen testing in the Italian region of Veneto favored the undetected spread of the antigen-escape variant compared to the rest of Italy. We highlight novel limitations of widespread antigen testing in the absence of molecular testing for diagnostic or confirmatory purposes. Critically, in the presence of a variant that escapes antigen testing, following up a proportion of negative antigen tests with a molecular test is the optimal testing strategy. Together, these findings highlight the importance of retaining molecular testing for surveillance purposes, also in contexts where the use of antigen tests is widespread.

6.
Viruses ; 14(2)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1687058

ABSTRACT

In February 2020, the municipality of Vo', a small town near Padua (Italy) was quarantined due to the first coronavirus disease 19 (COVID-19)-related death detected in Italy. To investigate the viral prevalence and clinical features, the entire population was swab tested in two sequential surveys. Here we report the analysis of 87 viral genomes, which revealed that the unique ancestor haplotype introduced in Vo' belongs to lineage B, carrying the mutations G11083T and G26144T. The viral sequences allowed us to investigate the viral evolution while being transmitted within and across households and the effectiveness of the non-pharmaceutical interventions implemented in Vo'. We report, for the first time, evidence that novel viral haplotypes can naturally arise intra-host within an interval as short as two weeks, in approximately 30% of the infected individuals, regardless of symptom severity or immune system deficiencies. Moreover, both phylogenetic and minimum spanning network analyses converge on the hypothesis that the viral sequences evolved from a unique common ancestor haplotype that was carried by an index case. The lockdown extinguished both the viral spread and the emergence of new variants.


Subject(s)
Family Characteristics , Genome, Viral , Haplotypes , Host Microbial Interactions/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Communicable Disease Control/methods , Evolution, Molecular , Humans , Italy/epidemiology , Mutation , Phylogeny , SARS-CoV-2/classification
7.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296781

ABSTRACT

In February and March 2020, one of the first Italian clusters of SARS-CoV-2 infection was detected in the municipality of Vo’. Positive subjects were followed up at 2 and 9 months post-infection with different immuno-assays and a micro-neutralisation test. Here we report on the results of the third serosurvey conducted in the same population in June 2021, 15 months post-infection, when we tested 61% of the infected individuals (n=76). Antibodies against the spike (S) antigen significantly decreased (P<0.006, Kruskal-Wallis test) among unvaccinated subjects (n=35) and increased (P<0.0001) in vaccinated individuals (n=41), whereas those against the nucleocapsid (N) decreased in the whole cohort. From the comparison with two control groups (naïve Vo’ inhabitants (n=20) and healthcare workers (HCW, n=61)), subjects vaccinated post exposure (hybrid immunity) had higher antibody levels (P<0.0001) than subjects vaccinated when naïve. Two doses of vaccine elicited stronger anti-S antibody response than natural infection (P<0.0001). Finally, the neutralising reactivity of sera against the B.1.617.2 (Delta) was lower than compared to the B.1 strain (median 1:320 versus 1:1280 1/dil, P<0.0001, and 1:640 versus 1:2560 1/dil, P=0.0014, after one or two vaccine doses, respectively), although subjects with hybrid immunity maintained neutralising titres above 1:40 1/dil.

8.
Pathog Glob Health ; 116(2): 128-136, 2022 03.
Article in English | MEDLINE | ID: covidwho-1462228

ABSTRACT

The COVID-19 pandemic has been threatening the healthcare and socioeconomic systems of entire nations. While population-based surveys to assess the distribution of SARS-CoV-2 infection have become a priority, pre-existing longitudinal studies are ideally suited to assess the determinants of COVID-19 onset and severity.The Cooperative Health Research In South Tyrol (CHRIS) study completed the baseline recruitment of 13,393 adults from the Venosta/Vinschgau rural district in 2018, collecting extensive phenotypic and biomarker data, metabolomic data, densely imputed genotype and whole-exome sequencing data.Based on CHRIS, we designed a prospective study, called CHRIS COVID-19, aimed at: 1) estimating the incidence of SARS-CoV-2 infections; 2) screening for and investigating the determinants of incident infection among CHRIS participants and their household members; 3) monitoring the immune response of infected participants prospectively.An online screening questionnaire was sent to all CHRIS participants and their household members. A random sample of 1450 participants representative of the district population was invited to assess active (nasopharyngeal swab) or past (serum antibody test) infections. We prospectively invited for complete SARS-CoV-2 testing all questionnaire completers gauged as possible cases of past infection and their household members. In positive tested individuals, antibody response is monitored quarterly for one year. Untested and negative participants receive the screening questionnaire every four weeks until gauged as possible incident cases or till the study end.Originated from a collaboration between researchers and community stakeholders, the CHRIS COVID-19 study aims at generating knowledge about the epidemiological, molecular, and genetic characterization of COVID-19 and its long-term sequelae.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics/prevention & control , Prospective Studies , SARS-CoV-2/genetics
9.
Front Med (Lausanne) ; 8: 714221, 2021.
Article in English | MEDLINE | ID: covidwho-1441117

ABSTRACT

Background: The impact of viral burden on severity and prognosis of patients hospitalized for Coronavirus Disease 2019 (COVID-19) is still a matter of debate due to controversial results. Herein, we sought to assess viral load in the nasopharyngeal swab and its association with severity score indexes and prognostic parameters. Methods: We included 127 symptomatic patients and 21 asymptomatic subjects with a diagnosis of SARS-CoV-2 infection obtained by reverse transcription polymerase chain reaction and presence of cycle threshold. According to the level of care needed during hospitalization, the population was categorized as high-intensity (HIMC, n = 76) or low intensity medical care setting (LIMC, n = 51). Results: Viral load did not differ among asymptomatic, LIMC, and HIMC SARS-CoV-2 positive patients [4.4 (2.9-5.3) vs. 4.8 (3.6-6.1) vs. 4.6 (3.9-5.7) log10 copies/ml, respectively; p = 0.31]. Similar results were observed when asymptomatic individuals were compared to hospitalized patients [4.4 (2.9-5.3) vs. 4.68 (3.8-5.9) log10 copies/ml; p = 0.13]. When the study population was divided in High (HVL, n = 64) and Low Viral Load (LVL, n = 63) group no differences were observed in disease severity at diagnosis. Furthermore, LVL and HVL groups did not differ with regard to duration of hospital stay, number of bacterial co-infections, need for high-intensity medical care and number of deaths. The viral load was not an independent risk factor for HIMC in an adjusted multivariate regression model (OR: 1.59; 95% CI: 0.46-5.55, p = 0.46). Conclusions: Viral load at diagnosis is similar in asymptomatic and hospitalized patients and is not associated with either worse outcomes during hospitalization. SARS CoV-2 viral load might not be the right tool to assist clinicians in risk-stratifying hospitalized patients.

12.
Nat Commun ; 12(1): 4383, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1317806

ABSTRACT

In February and March 2020, two mass swab testing campaigns were conducted in Vo', Italy. In May 2020, we tested 86% of the Vo' population with three immuno-assays detecting antibodies against the spike and nucleocapsid antigens, a neutralisation assay and Polymerase Chain Reaction (PCR). Subjects testing positive to PCR in February/March or a serological assay in May were tested again in November. Here we report on the results of the analysis of the May and November surveys. We estimate a seroprevalence of 3.5% (95% Credible Interval (CrI): 2.8-4.3%) in May. In November, 98.8% (95% Confidence Interval (CI): 93.7-100.0%) of sera which tested positive in May still reacted against at least one antigen; 18.6% (95% CI: 11.0-28.5%) showed an increase of antibody or neutralisation reactivity from May. Analysis of the serostatus of the members of 1,118 households indicates a 26.0% (95% CrI: 17.2-36.9%) Susceptible-Infectious Transmission Probability. Contact tracing had limited impact on epidemic suppression.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Testing/methods , COVID-19/immunology , COVID-19/transmission , SARS-CoV-2/immunology , Serologic Tests/methods , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Contact Tracing , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Italy/epidemiology , Male , Nucleocapsid , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology
14.
Nature ; 584(7821): 425-429, 2020 08.
Article in English | MEDLINE | ID: covidwho-628367

ABSTRACT

On 21 February 2020, a resident of the municipality of Vo', a small town near Padua (Italy), died of pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection1. This was the first coronavirus disease 19 (COVID-19)-related death detected in Italy since the detection of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. Here we collected information on the demography, clinical presentation, hospitalization, contact network and the presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. From the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI): 2.1-3.3%). From the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI: 0.8-1.8%). Notably, 42.5% (95% CI: 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (that is, did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI: 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (P = 0.62 and 0.74 for E and RdRp genes, respectively, exact Wilcoxon-Mann-Whitney test). This study sheds light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides insights into its transmission dynamics and the efficacy of the implemented control measures.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Infections/epidemiology , Betacoronavirus/enzymology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Child , Child, Preschool , Coronavirus Envelope Proteins , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus RNA-Dependent RNA Polymerase , Disease Outbreaks/statistics & numerical data , Female , Humans , Infant , Infant, Newborn , Italy/epidemiology , Male , Middle Aged , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Prevalence , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2 , Viral Envelope Proteins/genetics , Viral Load , Viral Nonstructural Proteins/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL