ABSTRACT
SARS-CoV-2 is constantly evolving, leading to new variants. We analysed data from 4400 SARS-CoV-2-positive samples in order to pursue epidemiological variant surveillance and to evaluate their impact on public health in Italy in the period of April-December 2021. The main circulating strain (76.2%) was the Delta variant, followed by the Alpha (13.3%), the Omicron (5.3%), and the Gamma variants (2.9%). The B.1.1 lineages, Eta, Beta, Iota, Mu, and Kappa variants, represented around 1% of cases. There were 48.2% of subjects who had not been vaccinated, and they had a lower median age compared to the vaccinated subjects (47 vs. 61 years). An increasing number of infections in the vaccinated subjects were observed over time, with the highest proportion in November (85.2%). The variants correlated with clinical status; the largest proportion of symptomatic patients (59.6%) was observed with the Delta variant, while subjects harbouring the Gamma variant showed the highest proportion of asymptomatic infection (21.6%), albeit also deaths (5.4%). The Omicron variant was only found in the vaccinated subjects, of which 47% had been hospitalised. The diffusivity and pathogenicity associated with the different SARS-CoV-2 variants are likely to have relevant public health implications, both at the national and international levels. Our study provides data on the rapid changes in the epidemiological landscape of the SARS-CoV-2 variants in Italy.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Italy/epidemiologyABSTRACT
INTRODUCTION: This paper describes how mortality among hospitalised COVID-19 patients changed during the first three waves of the epidemic in Italy. METHODS: This prospective cohort study used the Kaplan-Meier method to analyse the time-dependent probability of death of all of the patients admitted to a COVID-19 referral centre in Milan, Italy, during the three consecutive periods of: 21 February-31 July 2020 (first wave, W1), 1 August 2020-31 January 2021 (second wave, W2), and 1 February-30 April 2021 (third wave, W3). Cox models were used to examine the association between death and the period of admission after adjusting for age, biological sex, the time from symptom onset to admission, disease severity upon admission, obesity, and the comorbidity burden. RESULTS: Of the 2,023 COVID-19 patients admitted to our hospital during the study period, 553 (27.3%) were admitted during W1, 838 (41.5%) during W2, and 632 (31.2%) during W3. The crude mortality rate during W1, W2 and W3 was respectively 21.3%, 23.7% and 15.8%. After adjusting for potential confounders, hospitalisation during W2 or W3 was independently associated with a significantly lower risk of death than hospitalisation during W1 (adjusted hazard ratios [AHRs]: 0.75, 95% confidence interval [CI] 0.59-0.95, and 0.58, 95% CI 0.44-0.77). Among the patients aged >75 years, there was no significant difference in the probability of death during the three waves (AHRs during W2 and W3 vs W1: 0.93, 95% CI 0.65-1.33, and 0.88, 95% CI 0.59-1.32), whereas those presenting with critical disease during W2 and W3 were at significantly lower risk of dying than those admitted during W1 (AHRs 0.61, 95% CI 0.43-0.88, and 0.44, 95% CI 0.28-0.70). CONCLUSIONS: Hospitalisation during W2 and W3 was associated with a reduced risk of COVID-19 death in comparison with W1, but there was no difference in survival probability in patients aged >75 years.