Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337673

ABSTRACT

Summary Unlike mRNA vaccines based only on the Spike protein, inactivated SARS-CoV-2 vaccines should induce a diversified T cell response recognizing distinct structural proteins. Here we performed a comparative analysis of SARS-CoV-2 specific T cells in healthy individuals following vaccination with inactivated SARS-CoV-2 or mRNA vaccines. Relative to Spike mRNA vaccination, inactivated vaccines elicited a lower magnitude of Spike-specific T cells, but the combined Membrane, Nucleoprotein and Spike-specific T cell response was quantitatively comparable to the sole Spike T cell response induced by mRNA vaccines, and they efficiently tolerate the mutations characterizing the Omicron lineage. However, this multi-protein specific T cell response was not mediated by a coordinated CD4 and CD8 T cell expansion but by selected priming of CD4 T cells. These findings can help in defining the role of CD4 and CD8 T cells in the efficacy of the different vaccines to control severe COVID-19 after Omicron infection.

2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-336993

ABSTRACT

Rapid recognition of SARS-CoV-2-infected cells by T cells resident in the upper airway might provide an important layer of protection against COVID-19. Whether parenchymal SARS-CoV-2 vaccination or infection induce nasal resident T cells specific for distinct SARS-CoV-2 proteins is unknown. We collected T cells from the nasal secretion of COVID-19 vaccinees, who either experienced SARS-CoV-2 infection after vaccination (n=20) or not (n=15) and analyzed their phenotype, SARS-CoV-2 specificity and function. Nasal-resident IFN-γ producing SARS-CoV-2-specific CD8 and CD4 T cells were detected exclusively in vaccinees who experienced SARS-CoV-2 breakthrough infection. Importantly, the vaccine priming of Spike-specific T cells does not suppress the induction of CD8 and CD4 T cells specific for different SARS-CoV-2 proteins (i.e. NP and NSP-12) that persisted in the nasal cavity up to 3 months after infection. These data highlight the importance of viral nasal challenge in the formation of SARS-CoV-2 specific antiviral immunity at the site of primary infection and further define the immunological features of SARS-CoV-2 hybrid immunity.

3.
J Clin Invest ; 132(12)2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1832834

ABSTRACT

BACKGROUNDPatients undergoing immune-modifying therapies demonstrate a reduced humoral response after COVID-19 vaccination, but we lack a proper evaluation of the effect of such therapies on vaccine-induced T cell responses.METHODSWe longitudinally characterized humoral and spike-specific T cell responses in patients with inflammatory bowel disease (IBD), who were on antimetabolite therapy (azathioprine or methotrexate), TNF inhibitors, and/or other biologic treatment (anti-integrin or anti-p40) for up to 6 months after completing 2-dose COVID-19 mRNA vaccination.RESULTSWe demonstrate that a spike-specific T cell response was not only induced in treated patients with IBD at levels similar to those of healthy individuals, but also sustained at higher magnitude for up to 6 months after vaccination, particularly in those treated with TNF inhibitor therapy. Furthermore, the spike-specific T cell response in these patients was mainly preserved against mutations present in SARS-CoV-2 B.1.1.529 (Omicron) and characterized by a Th1/IL-10 cytokine profile.CONCLUSIONDespite the humoral response defects, patients under immune-modifying therapies demonstrated a favorable profile of vaccine-induced T cell responses that might still provide a layer of COVID-19 protection.FUNDINGThis study was funded by the National Centre for Infectious Diseases (NCID) Catalyst Grant (FY2021ES) and the National Research Fund Competitive Research Programme (NRF-CRP25-2020-0003).


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Viral Vaccines , Antibodies, Viral , COVID-19 Vaccines , Humans , Inflammatory Bowel Diseases/therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Vaccination , Viral Vaccines/genetics
5.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329243

ABSTRACT

Patients undergoing immune-modifying therapies demonstrate a reduced humoral response after COVID-19 vaccination, but we lack a proper evaluation of the impact of such therapies on vaccine-induced T cell responses. Here, we longitudinally characterised humoral and Spike-specific T cell responses in IBD patients who are on antimetabolite therapy (azathioprine or methotrexate), TNF inhibitors and/or other biologic treatment (anti-integrin or anti-p40) after mRNA vaccination. We demonstrated that a Spike-specific T cell response is not only induced in treated IBD patients at levels similar to healthy individuals, but also sustained at higher magnitude, particularly in those treated with TNF inhibitor therapy. Furthermore, the Spike-specific T cell response in these patients is mainly preserved against mutations present in SARS-CoV-2 B.1.1.529 (Omicron) and characterized by a Th1/IL-10 cytokine profile. Thus, despite the humoral response defects, the favourable profile of vaccine-induced T cell responses might still provide a layer of COVID-19 protection to patients under immune-modifying therapies.

6.
Med (N Y) ; 3(2): 104-118.e4, 2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1628746

ABSTRACT

BACKGROUND: Protection offered by coronavirus disease 2019 (COVID-19) vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. METHODS: We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals (n = 55) who were either primed with Ad26.COV2.S only (n = 13) or were boosted with a homologous (Ad26.COV2.S, n = 28) or heterologous (BNT162b2, n = 14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n = 16) or double (n = 44) dose of BNT162b2. FINDINGS: We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals. In contrast, the impact of the homologous boost was quantitatively minimal in Ad26.COV2.S-vaccinated individuals, and Spike-specific antibodies and T cells were narrowly focused to the S1 region. CONCLUSIONS: Despite the small sample size of the study and the lack of well-defined correlates of protection against COVID-19, the immunological features detected support the utilization of a heterologous vaccine boost in individuals who received Ad26.COV2.S vaccination. FUNDING: This study is partially supported by the Singapore Ministry of Health's National Medical Research Council under its COVID-19 Research Fund (COVID19RF3-0060, COVID19RF-001, and COVID19RF-008), The Medical College St. Bartholomew's Hospital Trustees - Pump Priming Fund for SMD COVID-19 Research.


Subject(s)
COVID-19 , Antibodies, Neutralizing , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2
8.
Emerg Microbes Infect ; 10(1): 2141-2150, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1532382

ABSTRACT

BACKGROUND: We studied humoral and cellular responses against SARS-CoV-2 longitudinally in a homogeneous population of healthy young/middle-aged men of South Asian ethnicity with mild COVID-19. METHODS: In total, we recruited 994 men (median age: 34 years) post-COVID-19 diagnosis. Repeated cross-sectional surveys were conducted between May 2020 and January 2021 at six time points - day 28 (n = 327), day 80 (n = 202), day 105 (n = 294), day 140 (n = 172), day 180 (n = 758), and day 280 (n = 311). Three commercial assays were used to detect anti-nucleoprotein (NP) and neutralizing antibodies. T cell response specific for Spike, Membrane and NP SARS-CoV-2 proteins was tested in 85 patients at day 105, 180, and 280. RESULTS: All serological tests displayed different kinetics of progressive antibody reduction while the frequency of T cells specific for different structural SARS-CoV-2 proteins was stable over time. Both showed a marked heterogeneity of magnitude among the studied cohort. Comparatively, cellular responses lasted longer than humoral responses and were still detectable nine months after infection in the individuals who lost antibody detection. Correlation between T cell frequencies and all antibodies was lost over time. CONCLUSION: Humoral and cellular immunity against SARS-CoV-2 is induced with differing kinetics of persistence in those with mild disease. The magnitude of T cells and antibodies is highly heterogeneous in a homogeneous study population. These observations have implications for COVID-19 surveillance, vaccination strategies, and post-pandemic planning.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/blood , Cross-Sectional Studies , Humans , Male , Nucleocapsid Proteins/immunology
9.
Nature ; 601(7891): 110-117, 2022 01.
Article in English | MEDLINE | ID: covidwho-1510600

ABSTRACT

Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , COVID-19/virology , DNA-Directed RNA Polymerases/immunology , SARS-CoV-2/immunology , Seroconversion , Cell Proliferation , Cohort Studies , DNA-Directed RNA Polymerases/metabolism , Evolution, Molecular , Female , Health Personnel , Humans , Male , Membrane Proteins/immunology , Multienzyme Complexes/immunology , SARS-CoV-2/enzymology , SARS-CoV-2/growth & development , Transcription, Genetic/immunology
10.
J Clin Invest ; 131(17)2021 09 01.
Article in English | MEDLINE | ID: covidwho-1463086

ABSTRACT

Defining the correlates of protection necessary to manage the COVID-19 pandemic requires the analysis of both antibody and T cell parameters, but the complexity of traditional tests limits virus-specific T cell measurements. We tested the sensitivity and performance of a simple and rapid SARS-CoV-2 spike protein-specific T cell test based on the stimulation of whole blood with peptides covering the SARS-CoV-2 spike protein, followed by cytokine (IFN-γ, IL-2) measurement in different cohorts including BNT162b2-vaccinated individuals (n = 112), convalescent asymptomatic and symptomatic COVID-19 patients (n = 130), and SARS-CoV-1-convalescent individuals (n = 12). The sensitivity of this rapid test is comparable to that of traditional methods of T cell analysis (ELISPOT, activation-induced marker). Using this test, we observed a similar mean magnitude of T cell responses between the vaccinees and SARS-CoV-2 convalescents 3 months after vaccination or virus priming. However, a wide heterogeneity of the magnitude of spike-specific T cell responses characterized the individual responses, irrespective of the time of analysis. The magnitude of these spike-specific T cell responses cannot be predicted from the neutralizing antibody levels. Hence, both humoral and cellular spike-specific immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 , Immunity, Cellular/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Adult , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
11.
Cell Mol Immunol ; 18(10): 2307-2312, 2021 10.
Article in English | MEDLINE | ID: covidwho-1392819

ABSTRACT

During viral infections, antibodies and T cells act together to prevent pathogen spread and remove virus-infected cells. Virus-specific adaptive immunity can, however, also trigger pathological processes characterized by localized or systemic inflammatory events. The protective and/or pathological role of virus-specific T cells in SARS-CoV-2 infection has been the focus of many studies in COVID-19 patients and in vaccinated individuals. Here, we review the works that have elucidated the function of SARS-CoV-2-specific T cells in patients and in vaccinated individuals. Understanding whether SARS-CoV-2-specific T cells are more linked to protection or pathogenesis is pivotal to define future therapeutic and prophylactic strategies to manage the current pandemic.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , T-Lymphocytes/immunology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Humans , Spike Glycoprotein, Coronavirus/metabolism
12.
Nature ; 584(7821): 457-462, 2020 08.
Article in English | MEDLINE | ID: covidwho-1373437

ABSTRACT

Memory T cells induced by previous pathogens can shape susceptibility to, and the clinical severity of, subsequent infections1. Little is known about the presence in humans of pre-existing memory T cells that have the potential to recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of ORF1) regions of SARS-CoV-2 in individuals convalescing from coronavirus disease 2019 (COVID-19) (n = 36). In all of these individuals, we found CD4 and CD8 T cells that recognized multiple regions of the N protein. Next, we showed that patients (n = 23) who recovered from SARS (the disease associated with SARS-CoV infection) possess long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after the outbreak of SARS in 2003; these T cells displayed robust cross-reactivity to the N protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cells in individuals with no history of SARS, COVID-19 or contact with individuals who had SARS and/or COVID-19 (n = 37). SARS-CoV-2-specific T cells in uninfected donors exhibited a different pattern of immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein. Epitope characterization of NSP7-specific T cells showed the recognition of protein fragments that are conserved among animal betacoronaviruses but have low homology to 'common cold' human-associated coronaviruses. Thus, infection with betacoronaviruses induces multi-specific and long-lasting T cell immunity against the structural N protein. Understanding how pre-existing N- and ORF1-specific T cells that are present in the general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection is important for the management of the current COVID-19 pandemic.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Severe Acute Respiratory Syndrome/immunology , T-Lymphocytes/immunology , Betacoronavirus/chemistry , COVID-19 , Case-Control Studies , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cross Reactions/immunology , Humans , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/virology , SARS-CoV-2
13.
Cell Rep ; 36(8): 109570, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1356159

ABSTRACT

The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.


Subject(s)
COVID-19/prevention & control , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Antibodies, Viral/blood , CD40 Ligand/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G/blood , Interferon-gamma/metabolism , Interleukin-2/metabolism , Peptides/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Vaccination , Vaccines, Synthetic/immunology
14.
Med (N Y) ; 2(6): 682-688.e4, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1174423

ABSTRACT

BACKGROUND: RNA vaccines against coronavirus disease 2019 (COVID-19) have demonstrated ∼95% efficacy in phase III clinical trials. Although complete vaccination consisted of 2 doses, the onset of protection for both licensed RNA vaccines was observed as early as 12 days after a single dose. The adaptive immune response that coincides with this onset of protection could represent the necessary elements of immunity against COVID-19. METHODS: Serological and T cell analysis was performed in a cohort of 20 healthcare workers after receiving the first dose of the Pfizer/BioNTech BNT162b2 vaccine. The primary endpoint was the adaptive immune responses detectable at days 7 and 10 after dosing. FINDINGS: Spike-specific T cells and binding antibodies were detectable 10 days after the first dose of the vaccine, in contrast to receptor-blocking and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) neutralizing antibodies, which were mostly undetectable at this early time point. CONCLUSIONS: Our findings suggest that early T cell and binding antibody responses, rather than either receptor-blocking or virus neutralizing activity, induced early protection against COVID-19. FUNDING: The study was funded by a generous donation from The Hour Glass to support COVID-19 research.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Immunoglobulin G , RNA , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes , Vaccines, Synthetic
15.
Lancet Microbe ; 2(6): e240-e249, 2021 06.
Article in English | MEDLINE | ID: covidwho-1155679

ABSTRACT

BACKGROUND: Studies have found different waning rates of neutralising antibodies compared with binding antibodies against SARS-CoV-2. The impact of neutralising antibody waning rate at the individual patient level on the longevity of immunity remains unknown. We aimed to investigate the peak levels and dynamics of neutralising antibody waning and IgG avidity maturation over time, and correlate this with clinical parameters, cytokines, and T-cell responses. METHODS: We did a longitudinal study of patients who had recovered from COVID-19 up to day 180 post-symptom onset by monitoring changes in neutralising antibody levels using a previously validated surrogate virus neutralisation test. Changes in antibody avidities and other immune markers at different convalescent stages were determined and correlated with clinical features. Using a machine learning algorithm, temporal change in neutralising antibody levels was classified into five groups and used to predict the longevity of neutralising antibody-mediated immunity. FINDINGS: We approached 517 patients for participation in the study, of whom 288 consented for outpatient follow-up and collection of serial blood samples. 164 patients were followed up and had adequate blood samples collected for analysis, with a total of 546 serum samples collected, including 128 blood samples taken up to 180 days post-symptom onset. We identified five distinctive patterns of neutralising antibody dynamics as follows: negative, individuals who did not, at our intervals of sampling, develop neutralising antibodies at the 30% inhibition level (19 [12%] of 164 patients); rapid waning, individuals who had varying levels of neutralising antibodies from around 20 days after symptom onset, but seroreverted in less than 180 days (44 [27%] of 164 patients); slow waning, individuals who remained neutralising antibody-positive at 180 days post-symptom onset (46 [28%] of 164 patients); persistent, although with varying peak neutralising antibody levels, these individuals had minimal neutralising antibody decay (52 [32%] of 164 patients); and delayed response, a small group that showed an unexpected increase of neutralising antibodies during late convalescence (at 90 or 180 days after symptom onset; three [2%] of 164 patients). Persistence of neutralising antibodies was associated with disease severity and sustained level of pro-inflammatory cytokines, chemokines, and growth factors. By contrast, T-cell responses were similar among the different neutralising antibody dynamics groups. On the basis of the different decay dynamics, we established a prediction algorithm that revealed a wide range of neutralising antibody longevity, varying from around 40 days to many decades. INTERPRETATION: Neutralising antibody response dynamics in patients who have recovered from COVID-19 vary greatly, and prediction of immune longevity can only be accurately determined at the individual level. Our findings emphasise the importance of public health and social measures in the ongoing pandemic outbreak response, and might have implications for longevity of immunity after vaccination. FUNDING: National Medical Research Council, Biomedical Research Council, and A*STAR, Singapore.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Humans , Longitudinal Studies
16.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: covidwho-1109140

ABSTRACT

The efficacy of virus-specific T cells in clearing pathogens involves a fine balance between antiviral and inflammatory features. SARS-CoV-2-specific T cells in individuals who clear SARS-CoV-2 without symptoms could reveal nonpathological yet protective characteristics. We longitudinally studied SARS-CoV-2-specific T cells in a cohort of asymptomatic (n = 85) and symptomatic (n = 75) COVID-19 patients after seroconversion. We quantified T cells reactive to structural proteins (M, NP, and Spike) using ELISpot and cytokine secretion in whole blood. Frequencies of SARS-CoV-2-specific T cells were similar between asymptomatic and symptomatic individuals, but the former showed an increased IFN-γ and IL-2 production. This was associated with a proportional secretion of IL-10 and proinflammatory cytokines (IL-6, TNF-α, and IL-1ß) only in asymptomatic infection, while a disproportionate secretion of inflammatory cytokines was triggered by SARS-CoV-2-specific T cell activation in symptomatic individuals. Thus, asymptomatic SARS-CoV-2-infected individuals are not characterized by weak antiviral immunity; on the contrary, they mount a highly functional virus-specific cellular immune response.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , Cytokines/immunology , Lymphocyte Activation , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , COVID-19/blood , Cytokines/blood , Humans , Male , Middle Aged , SARS-CoV-2/metabolism , T-Lymphocytes/metabolism
17.
Oxford Open Immunology ; 2021.
Article in English | Oxford Academic | ID: covidwho-1101868

ABSTRACT

SARS-CoV-2, the etiological agent of COVID-19, triggers an adaptive immunity in the infected host that results in the production of virus-specific antibodies and T cells.

18.
Cell Rep ; 34(6): 108728, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1039309

ABSTRACT

Virus-specific humoral and cellular immunity act synergistically to protect the host from viral infection. We interrogate the dynamic changes of virological and immunological parameters in 12 patients with symptomatic acute SARS-CoV-2 infection from disease onset to convalescence or death. We quantify SARS-CoV-2 viral RNA in the respiratory tract in parallel with antibodies and circulating T cells specific for various structural (nucleoprotein [NP], membrane [M], ORF3a, and spike) and non-structural (ORF7/8, NSP7, and NSP13) proteins. Although rapid induction and quantity of humoral responses associate with an increase in disease severity, early induction of interferon (IFN)-γ-secreting SARS-CoV-2-specific T cells is present in patients with mild disease and accelerated viral clearance. These findings provide support for the prognostic value of early functional SARS-CoV-2-specific T cells with important implications in vaccine design and immune monitoring.


Subject(s)
COVID-19 , Interferon-gamma/metabolism , T-Lymphocytes , Acute-Phase Reaction , Adult , Aged , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Convalescence , Humans , Immunity, Cellular , Immunity, Humoral , Longitudinal Studies , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL