Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Clin Nucl Med ; 48(1): 8-17, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2087929


ABSTRACT: Invented and first approved for clinical use in Australia 36 years ago, Technegas is the technology that enabled ventilation scintigraphy with 99m Tc-labeled carbon nanoparticles ( 99m Tc-CNP). The US Food and Drug Administration (FDA) has considered this technology for more than 30 years but only now is getting close to approving it. Meanwhile, more than 4.4 million patients benefited from this technology in 64 countries worldwide. The primary application of 99m Tc-CNP ventilation imaging is the diagnostic evaluation for suspicion of pulmonary embolism using ventilation-perfusion quotient (V/Q) imaging. Because of 99m Tc-CNP's long pulmonary residence, tomographic imaging emerged as the preferred V/Q methodology. The FDA-approved ventilation imaging agents are primarily suitable for planar imaging, which is less sensitive. After the FDA approval of Technegas, the US practice will likely shift to tomographic V/Q. The 99m Tc-CNP use is of particular interest in the COVID-19 pandemic because it offers an option of a dry radioaerosol that takes approximately only 3 to 5 tidal breaths, allowing the shortest exposure to and contact with possibly infected patients. Indeed, countries where 99m Tc-CNP was approved for clinical use continued using it throughout the COVID-19 pandemic without known negative viral transmission consequences. Conversely, the ventilation imaging was halted in most US facilities from the beginning of the pandemic. This review is intended to familiarize the US clinical nuclear medicine community with the basic science of 99m Tc-CNP ventilation imaging and its clinical applications, including common artifacts and interpretation criteria for tomographic V/Q imaging for pulmonary embolism.

COVID-19 , Pulmonary Embolism , Humans , Carbon , COVID-19/diagnostic imaging , Lung , Pandemics , Pulmonary Embolism/diagnostic imaging , Pulmonary Ventilation , Radionuclide Imaging , Respiratory Aerosols and Droplets , Technetium , Ventilation-Perfusion Ratio , Nanostructures
Clin Nucl Med ; 47(8): e540-e547, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1861003


PURPOSE: In coronavirus disease 2019 (COVID-19) patients, clinical manifestations as well as chest CT lesions are variable. Lung scintigraphy allows to assess and compare the regional distribution of ventilation and perfusion throughout the lungs. Our main objective was to describe ventilation and perfusion injury by type of chest CT lesions of COVID-19 infection using V/Q SPECT/CT imaging. PATIENTS AND METHODS: We explored a national registry including V/Q SPECT/CT performed during a proven acute SARS-CoV-2 infection. Chest CT findings of COVID-19 disease were classified in 3 elementary lesions: ground-glass opacities, crazy-paving (CP), and consolidation. For each type of chest CT lesions, a semiquantitative evaluation of ventilation and perfusion was visually performed using a 5-point scale score (0 = normal to 4 = absent function). RESULTS: V/Q SPECT/CT was performed in 145 patients recruited in 9 nuclear medicine departments. Parenchymal lesions were visible in 126 patients (86.9%). Ground-glass opacities were visible in 33 patients (22.8%) and were responsible for minimal perfusion impairment (perfusion score [mean ± SD], 0.9 ± 0.6) and moderate ventilation impairment (ventilation score, 1.7 ± 1); CP was visible in 43 patients (29.7%) and caused moderate perfusion impairment (2.1 ± 1.1) and moderate-to-severe ventilation impairment (2.5 ± 1.1); consolidation was visible in 89 patients (61.4%) and was associated with moderate perfusion impairment (2.1 ± 1) and severe ventilation impairment (3.0 ± 0.9). CONCLUSIONS: In COVID-19 patients assessed with V/Q SPECT/CT, a large proportion demonstrated parenchymal lung lesions on CT, responsible for ventilation and perfusion injury. COVID-19-related pulmonary lesions were, in order of frequency and functional impairment, consolidations, CP, and ground-glass opacity, with typically a reverse mismatched or matched pattern.

COVID-19 , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Registries , SARS-CoV-2 , Ventilation-Perfusion Scan