Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1690192

ABSTRACT

In December 2019 the SARS-CoV-2 virus appeared in the world, mainly presenting as an acute infection of the lower respiratory tract, namely pneumonia. Nearly 10% of all patients show significant pulmonary fibrotic changes after the infection. The aim of this study was to evaluate the effectiveness and safety of potassium canrenoate in the treatment of COVID-19-associated pneumonia and pulmonary fibrosis. We performed a randomized clinical trial (RCT) of potassium canrenoate vs placebo. A total of 55 patients were randomized and 49 were included in the final analysis (24 allocated to the intervention group and 25 allocated to the control group). Patients were assessed by physical examination, lung ultrasound, CT imaging and blood samples that underwent biochemical analysis. This RCT has shown that the administration of potassium canrenoate to patients with COVID-19 induced pneumonia was not associated with shorter mechanical ventilation time, shorter passive oxygenation, shorter length of hospitalization or less fibrotic changes on CT imaging. The overall mortality rate was not significantly different between the two groups. Adverse events recorded in this study were not significantly increased by the administration of potassium canrenoate. The negative outcome of the study may be associated with the relatively small number of patients included. Any possible benefits from the use of potassium canrenoate as an antifibrotic drug in COVID-19 patients require further investigation.

3.
Drug Resist Updat ; 59: 100794, 2021 12.
Article in English | MEDLINE | ID: covidwho-1561685

ABSTRACT

The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Adult , Antiviral Agents/therapeutic use , COVID-19/therapy , Humans , Immunization, Passive , Lactams , Leucine , Nitriles , Pandemics , Proline , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
4.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 17.
Article in English | MEDLINE | ID: covidwho-1031152

ABSTRACT

In March 2020, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was declared a global pandemic by the World Health Organization (WHO). The clinical course of the disease is unpredictable but may lead to severe acute respiratory infection (SARI) and pneumonia leading to acute respiratory distress syndrome (ARDS). It has been shown that pulmonary fibrosis may be one of the major long-term complications of COVID-19. In animal models, the use of spironolactone was proven to be an important drug in the prevention of pulmonary fibrosis. Through its dual action as a mineralocorticoid receptor (MR) antagonist and an androgenic inhibitor, spironolactone can provide significant benefits concerning COVID-19 infection. The primary effect of spironolactone in reducing pulmonary edema may also be beneficial in COVID-19 ARDS. Spironolactone is a well-known, widely used and safe anti-hypertensive and antiandrogenic medication. It has potassium-sparing diuretic action by antagonizing mineralocorticoid receptors (MRs). Spironolactone and potassium canrenoate, exerting combined pleiotropic action, may provide a therapeutic benefit to patients with COVID-19 pneumonia through antiandrogen, MR blocking, antifibrotic and anti-hyperinflammatory action. It has been proposed that spironolactone may prevent acute lung injury in COVID-19 infection due to its pleiotropic effects with favorable renin-angiotensin-aldosterone system (RAAS) and ACE2 expression, reduction in transmembrane serine protease 2 (TMPRSS2) activity and antiandrogenic action, and therefore it may prove to act as additional protection for patients at highest risk of severe pneumonia. Future prospective clinical trials are warranted to evaluate its therapeutic potential.

5.
Clin Interv Aging ; 15: 1231-1240, 2020.
Article in English | MEDLINE | ID: covidwho-689982

ABSTRACT

Since the beginning of 2020, the whole world has been struggling with the pandemic of Coronavirus Disease 2019 (COVID-19) caused by a novel coronavirus SARS-CoV-2. The SARS-CoV-2 infection depends on ACE2, TMPRSS2, and CD147, which are expressed on host cells. Several studies suggest that some single nucleotide polymorphisms (SNPs) of ACE2 might be a risk factor of COVID-19 infection. Genotypes affect ACE2 structure, its serum concentration, and levels of circulating angiotensin (1-7). Moreover, there is evidence that ACE genotype affects the outcomes of acute respiratory distress syndrome (ARDS) treatment, the most severe consequence of SARS-CoV-2 infection. COVID-19 morbidity, infection course, and mortality might depend on ACE D allele frequency. The aim of this narrative review was to analyze and identify the mechanisms of ACE-I and ARBs with particular emphasis on angiotensin receptors and their polymorphism in the light of COVID-19 pandemic as these medications are commonly prescribed to elderly patients. There is no direct evidence yet for ACE-I or ARBs in the treatment of COVID-19. However, for those already taking these medications, both the European Society of Cardiology and the American College of Cardiology recommend continuing the treatment, because at present, there is no clear clinical or scientific evidence to justify the discontinuation of ACE-I or ARBs. Individualized treatment decisions should be based on the clinical condition and co-morbidities of each patient.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Aged , Animals , COVID-19 , Comorbidity , Coronavirus Infections/genetics , Eye Diseases, Hereditary , Gene Frequency , Genotype , Humans , Pandemics , Pneumonia, Viral/genetics , Retinal Diseases , SARS-CoV-2
6.
Brain Sciences ; 10(7):465, 2020.
Article | WHO COVID | ID: covidwho-651559

ABSTRACT

Since the end of 2019, the whole world has been struggling with the pandemic of the new Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Available evidence suggests that pain is a common symptom during Coronavirus Disease 2019 (COVID-19). According to the World Health Organization, many patients suffer from muscle pain (myalgia) and/or joint pain (arthralgia), sore throat and headache. The exact mechanisms of headache and myalgia during viral infection are still unknown. Moreover, many patients with respiratory failure get admitted to the intensive care unit (ICU) for ventilatory support. Pain in ICU patients can be associated with viral disease itself (myalgia, arthralgia, peripheral neuropathies), may be caused by continuous pain and discomfort associated with ICU treatment, intermittent procedural pain and chronic pain present before admission to the ICU. Undertreatment of pain, especially when sedation and neuromuscular blocking agents are used, prone positioning during mechanical ventilation or extracorporeal membrane oxygenation (ECMO) may trigger delirium and cause peripheral neuropathies. This narrative review summarizes current knowledge regarding challenges associated with pain assessment and management in COVID-19 patients. A structured prospective evaluation should be undertaken to analyze the probability, severity, sources and adequate treatment of pain in patients with COVID-19 infection.

7.
Drug Resist Updat ; 53: 100719, 2020 12.
Article in English | MEDLINE | ID: covidwho-645153

ABSTRACT

In December 2019, a novel SARS-CoV-2 coronavirus emerged, causing an outbreak of life-threatening pneumonia in the Hubei province, China, and has now spread worldwide, causing a pandemic. The urgent need to control the disease, combined with the lack of specific and effective treatment modalities, call for the use of FDA-approved agents that have shown efficacy against similar pathogens. Chloroquine, remdesivir, lopinavir/ritonavir or ribavirin have all been successful in inhibiting SARS-CoV-2 in vitro. The initial results of a number of clinical trials involving various protocols of administration of chloroquine or hydroxychloroquine mostly point towards their beneficial effect. However, they may not be effective in cases with persistently high viremia, while results on ivermectin (another antiparasitic agent) are not yet available. Interestingly, azithromycin, a macrolide antibiotic in combination with hydroxychloroquine, might yield clinical benefit as an adjunctive. The results of clinical trials point to the potential clinical efficacy of antivirals, especially remdesivir (GS-5734), lopinavir/ritonavir, and favipiravir. Other therapeutic options that are being explored involve meplazumab, tocilizumab, and interferon type 1. We discuss a number of other drugs that are currently in clinical trials, whose results are not yet available, and in various instances we enrich such efficacy analysis by invoking historic data on the treatment of SARS, MERS, influenza, or in vitro studies. Meanwhile, scientists worldwide are seeking to discover novel drugs that take advantage of the molecular structure of the virus, its intracellular life cycle that probably elucidates unfolded-protein response, as well as its mechanism of surface binding and cell invasion, like angiotensin converting enzymes-, HR1, and metalloproteinase inhibitors.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , Drug Approval/methods , SARS-CoV-2/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/metabolism , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/metabolism , Antimalarials/administration & dosage , Antimalarials/metabolism , Antiviral Agents/metabolism , COVID-19/metabolism , Clinical Trials as Topic/methods , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/metabolism , Drug Therapy, Combination , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/metabolism , SARS-CoV-2/metabolism , United States/epidemiology
8.
J Clin Med ; 9(6)2020 Jun 19.
Article in English | MEDLINE | ID: covidwho-609200

ABSTRACT

In December 2019, a novel coronavirus, SARS-CoV-2, appeared, causing a wide range of symptoms, mainly respiratory infection. In March 2020, the World Health Organization (WHO) declared Coronavirus Disease 2019 (COVID-19) a pandemic, therefore the efforts of scientists around the world are focused on finding the right treatment and vaccine for the novel disease. COVID-19 has spread rapidly over several months, affecting patients across all age groups and geographic areas. The disease has a diverse course; patients may range from asymptomatic to those with respiratory failure, complicated by acute respiratory distress syndrome (ARDS). One possible complication of pulmonary involvement in COVID-19 is pulmonary fibrosis, which leads to chronic breathing difficulties, long-term disability and affects patients' quality of life. There are no specific mechanisms that lead to this phenomenon in COVID-19, but some information arises from previous severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS) epidemics. The aim of this narrative review is to present the possible causes and pathophysiology of pulmonary fibrosis associated with COVID-19 based on the mechanisms of the immune response, to suggest possible ways of prevention and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL