Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Blood Adv ; 2022 May 03.
Article in English | MEDLINE | ID: covidwho-1820127

ABSTRACT

BACKGROUND: COVID-19 related acute illness is associated with an increased risk of venous thromboembolism (VTE). OBJECTIVE: These evidence-based guidelines of the American Society of Hematology (ASH) are intended to support patients, clinicians and other health care professionals in decisions about the use of anticoagulation in patients with COVID-19. METHODS: ASH formed a multidisciplinary guideline panel, including patient representatives, and applied strategies to minimize potential bias from conflicts of interest. The McMaster University GRADE Centre supported the guideline development process, including performing systematic evidence reviews (through November 2021). The panel prioritized clinical questions and outcomes according to their importance for clinicians and patients. The panel used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess evidence and make recommendations, which were subject to public comment. This is an update to guidelines published in February 2021 as part of the living phase of these guidelines. RESULTS: The panel made one additional recommendation. The panel issued a conditional recommendation in favor of therapeutic-intensity over prophylactic-intensity anticoagulation in patients with COVID-19-related acute illness who do not have suspected or confirmed VTE. The panel emphasized the need for an individualized assessment of thrombotic and bleeding risk. The panel also noted that heparin (unfractionated or low-molecular-weight) may be preferred because of a preponderance of evidence with this class of anticoagulants. CONCLUSIONS: This conditional recommendation was based on very low certainty in the evidence, underscoring the need for additional, high-quality, randomized controlled trials comparing different intensities of anticoagulation in patients with COVID-19-related acute illness.

2.
Blood ; 139(10): 1564-1574, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1736325

ABSTRACT

Cases of de novo immune thrombocytopenia (ITP), including a fatality, following SARS-CoV-2 vaccination in previously healthy recipients led to studying its impact in preexisting ITP. In this study, 4 data sources were analyzed: the Vaccine Adverse Events Reporting System (VAERS) for cases of de novo ITP; a 10-center retrospective study of adults with preexisting ITP receiving SARS-CoV-2 vaccination; and surveys distributed by the Platelet Disorder Support Association (PDSA) and the United Kingdom (UK) ITP Support Association. Seventy-seven de novo ITP cases were identified in VAERS, presenting with median platelet count of 3 [1-9] ×109/L approximately 1 week postvaccination. Of 28 patients with available data, 26 responded to treatment with corticosteroids and/or intravenous immunoglobulin (IVIG), and/or platelet transfusions. Among 117 patients with preexisting ITP who received a SARS-CoV-2 vaccine, 19 experienced an ITP exacerbation (any of: ≥50% decline in platelet count, nadir platelet count <30 × 109/L with >20% decrease from baseline, and/or use of rescue therapy) following the first dose and 14 of 70 after a second dose. Splenectomized persons and those who received 5 or more prior lines of therapy were at highest risk of ITP exacerbation. Fifteen patients received and responded to rescue treatment. In surveys of both 57 PDSA and 43 UK patients with ITP, prior splenectomy was associated with worsened thrombocytopenia. ITP may worsen in preexisting ITP or be identified de novo post-SARS-CoV2 vaccination; both situations responded well to treatment. Proactive monitoring of patients with known ITP, especially those postsplenectomy and with more refractory disease, is indicated.


Subject(s)
COVID-19 Vaccines , COVID-19 , Purpura, Thrombocytopenic, Idiopathic , SARS-CoV-2 , Aged , Aged, 80 and over , Blood Platelets/immunology , Blood Platelets/metabolism , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Female , Humans , Male , Middle Aged , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Splenectomy , United Kingdom/epidemiology
3.
PLoS One ; 17(3): e0264178, 2022.
Article in English | MEDLINE | ID: covidwho-1731596

ABSTRACT

Renalase is a secreted flavoprotein with anti-inflammatory and pro-cell survival properties. COVID-19 is associated with disordered inflammation and apoptosis. We hypothesized that blood renalase levels would correspond to severe COVID-19 and survival. In this retrospective cohort study, clinicopathologic data and blood samples were collected from hospitalized COVID-19 subjects (March-June 2020) at a single institution tertiary hospital. Plasma renalase and cytokine levels were measured and clinical data abstracted from health records. Of 3,450 COVID-19 patients, 458 patients were enrolled. Patients were excluded if <18 years, or opted out of research. The primary composite outcome was intubation or death within 180 days. Secondary outcomes included mortality alone, intensive care unit admission, use of vasopressors, and CPR. Enrolled patients had mean age 64 years (SD±17), were 53% males, and 48% non-whites. Mean renalase levels was 14,108·4 ng/ml (SD±8,137 ng/ml). Compared to patients with high renalase, those with low renalase (< 8,922 ng/ml) were more likely to present with hypoxia, increased ICU admission (54% vs. 33%, p < 0.001), and cardiopulmonary resuscitation (10% vs. 4%, p = 0·023). In Cox proportional hazard model, every 1000 ng/ml increase in renalase decreased the risk of death or intubation by 5% (HR 0·95; 95% CI 0·91-0·98) and increased survival alone by 6% (HR 0·95; CI 0·90-0·98), after adjusting for socio-demographics, initial disease severity, comorbidities and inflammation. Patients with high renalase-low IL-6 levels had the best survival compared to other groups (p = 0·04). Renalase was independently associated with reduced intubation and mortality in hospitalized COVID-19 patients. Future studies should assess the pathophysiological relevance of renalase in COVID-19 disease.


Subject(s)
COVID-19/pathology , Monoamine Oxidase/blood , Adult , Aged , COVID-19/mortality , COVID-19/virology , Endothelium/metabolism , Endothelium/pathology , Female , Hospitalization , Humans , Intensive Care Units , Interleukin-6/blood , Kaplan-Meier Estimate , Male , Middle Aged , Proportional Hazards Models , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index
5.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750468

ABSTRACT

Despite over 9.3 million infected and 479,000 deaths, the pathophysiological factors that determine the wide spectrum of clinical outcomes in COVID-19 remain inadequately defined. Importantly, patients with underlying cardiovascular disease have been found to have worse clinical outcomes,1 and autopsy findings of endotheliopathy as well as angiogenesis in COVID-19 have accumulated.2,3 Nonetheless, circulating vascular markers associated with disease severity and mortality have not been reliably established. To address this limitation and better understand COVID-19 pathogenesis, we report plasma profiling of factors related to the vascular system from a series of patients admitted to Yale-New Haven Hospital with confirmed diagnosis of COVID-19 via PCR, which demonstrate significant increase in markers of angiogenesis and endotheliopathy in patients hospitalized with COVID-19.

6.
Blood ; 139(10): 1564-1574, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1443789

ABSTRACT

Cases of de novo immune thrombocytopenia (ITP), including a fatality, following SARS-CoV-2 vaccination in previously healthy recipients led to studying its impact in preexisting ITP. In this study, 4 data sources were analyzed: the Vaccine Adverse Events Reporting System (VAERS) for cases of de novo ITP; a 10-center retrospective study of adults with preexisting ITP receiving SARS-CoV-2 vaccination; and surveys distributed by the Platelet Disorder Support Association (PDSA) and the United Kingdom (UK) ITP Support Association. Seventy-seven de novo ITP cases were identified in VAERS, presenting with median platelet count of 3 [1-9] ×109/L approximately 1 week postvaccination. Of 28 patients with available data, 26 responded to treatment with corticosteroids and/or intravenous immunoglobulin (IVIG), and/or platelet transfusions. Among 117 patients with preexisting ITP who received a SARS-CoV-2 vaccine, 19 experienced an ITP exacerbation (any of: ≥50% decline in platelet count, nadir platelet count <30 × 109/L with >20% decrease from baseline, and/or use of rescue therapy) following the first dose and 14 of 70 after a second dose. Splenectomized persons and those who received 5 or more prior lines of therapy were at highest risk of ITP exacerbation. Fifteen patients received and responded to rescue treatment. In surveys of both 57 PDSA and 43 UK patients with ITP, prior splenectomy was associated with worsened thrombocytopenia. ITP may worsen in preexisting ITP or be identified de novo post-SARS-CoV2 vaccination; both situations responded well to treatment. Proactive monitoring of patients with known ITP, especially those postsplenectomy and with more refractory disease, is indicated.


Subject(s)
COVID-19 Vaccines , COVID-19 , Purpura, Thrombocytopenic, Idiopathic , SARS-CoV-2 , Aged , Aged, 80 and over , Blood Platelets/immunology , Blood Platelets/metabolism , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Female , Humans , Male , Middle Aged , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Splenectomy , United Kingdom/epidemiology
7.
PLoS Biol ; 19(8): e3001373, 2021 08.
Article in English | MEDLINE | ID: covidwho-1346324

ABSTRACT

Challenges in using cytokine data are limiting Coronavirus Disease 2019 (COVID-19) patient management and comparison among different disease contexts. We suggest mitigation strategies to improve the accuracy of cytokine data, as we learn from experience gained during the COVID-19 pandemic.


Subject(s)
COVID-19/immunology , COVID-19/therapy , COVID-19/epidemiology , Cytokines/immunology , Humans , Pandemics , Patient Care/methods , SARS-CoV-2/immunology
8.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: covidwho-1320461

ABSTRACT

BACKGROUNDIndividuals recovering from COVID-19 frequently experience persistent respiratory ailments, which are key elements of postacute sequelae of SARS-CoV-2 infection (PASC); however, little is known about the underlying biological factors that may direct lung recovery and the extent to which these are affected by COVID-19 severity.METHODSWe performed a prospective cohort study of individuals with persistent symptoms after acute COVID-19, collecting clinical data, pulmonary function tests, and plasma samples used for multiplex profiling of inflammatory, metabolic, angiogenic, and fibrotic factors.RESULTSSixty-one participants were enrolled across 2 academic medical centers at a median of 9 weeks (interquartile range, 6-10 weeks) after COVID-19 illness: n = 13 participants (21%) had mild COVID-19 and were not hospitalized, n = 30 participants (49%) were hospitalized but were considered noncritical, and n = 18 participants (30%) were hospitalized and in the intensive care unit (ICU). Fifty-three participants (85%) had lingering symptoms, most commonly dyspnea (69%) and cough (58%). Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and diffusing capacity for carbon monoxide (DLCO) declined as COVID-19 severity increased (P < 0.05) but these values did not correlate with respiratory symptoms. Partial least-squares discriminant analysis of plasma biomarker profiles clustered participants by past COVID-19 severity. Lipocalin-2 (LCN2), MMP-7, and HGF identified by our analysis were significantly higher in the ICU group (P < 0.05), inversely correlated with FVC and DLCO (P < 0.05), and were confirmed in a separate validation cohort (n = 53).CONCLUSIONSubjective respiratory symptoms are common after acute COVID-19 illness but do not correlate with COVID-19 severity or pulmonary function. Host response profiles reflecting neutrophil activation (LCN2), fibrosis signaling (MMP-7), and alveolar repair (HGF) track with lung impairment and may be novel therapeutic or prognostic targets.FundingNational Heart, Lung, and Blood Institute (K08HL130557 and R01HL142818), American Heart Association (Transformational Project Award), the DeLuca Foundation Award, a donation from Jack Levin to the Benign Hematology Program at Yale University, and Duke University.


Subject(s)
COVID-19/complications , Hepatocyte Growth Factor/analysis , Lipocalin-2/analysis , Matrix Metalloproteinase 7/analysis , Pulmonary Fibrosis , Respiratory Function Tests , COVID-19/diagnosis , COVID-19/immunology , COVID-19/physiopathology , Cough/diagnosis , Cough/etiology , Dyspnea/diagnosis , Dyspnea/etiology , Female , Humans , Lung/metabolism , Lung/pathology , Lung/physiopathology , Male , Middle Aged , Neutrophil Activation/immunology , Prognosis , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Recovery of Function/immunology , Respiratory Function Tests/methods , Respiratory Function Tests/statistics & numerical data , SARS-CoV-2 , Severity of Illness Index
9.
Obes Res Clin Pract ; 15(5): 512-514, 2021.
Article in English | MEDLINE | ID: covidwho-1313362

ABSTRACT

INTRODUCTION: Although both obesity and coronavirus disease 2019 (COVID-19) independently induce inflammation and thrombosis, the association between obesity class and risk of thrombosis in patients with COVID-19 remains unclear. METHODS: This retrospective cohort study included consecutive patients hospitalized with COVID-19 at a single institution. Patients were categorized based on obesity class. The main outcomes were venous thromboembolism (VTE) and myocardial injury, a marker of microvascular thrombosis in COVID-19. Adjustments were made for sociodemographic variables, cardiovascular disease risk factors and comorbidities. RESULTS: 609 patients with COVID-19 were included. 351 (58%) patients were without obesity, 110 (18%) were patients with class I obesity, 76 (12%) were patients with class II obesity, and 72 (12%) were patients with class III obesity. Patients with class I and III obesity had significantly higher risk-adjusted odds of VTE compared to patients without obesity (OR = 2.54, 95% CI: 1.05-6.14 for class I obesity; and OR = 3.95, 95% CI: 1.40-11.14 for class III obesity). Patients with class III obesity had significantly higher risk-adjusted odds of myocardial injury compared to patients without obesity (OR = 2.15, 95% CI: 1.12-4.12). Both VTE and myocardial injury were significantly associated with greater risk-adjusted odds of mortality. CONCLUSION: This study demonstrates that both macrovascular and microvascular thromboses may contribute to the elevated morbidity and mortality in patients with obesity and COVID-19.


Subject(s)
COVID-19 , Venous Thromboembolism , Humans , Obesity/complications , Retrospective Studies , Risk Factors , SARS-CoV-2 , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
11.
Br J Haematol ; 194(3): 491-493, 2021 08.
Article in English | MEDLINE | ID: covidwho-1266319

Subject(s)
COVID-19 , Humans , SARS-CoV-2
12.
J Hepatol ; 75(3): 647-658, 2021 09.
Article in English | MEDLINE | ID: covidwho-1228069

ABSTRACT

BACKGROUND AND AIMS: COVID-19 is associated with liver injury and elevated interleukin-6 (IL-6). We hypothesized that IL-6 trans-signaling in liver sinusoidal endothelial cells (LSECs) leads to endotheliopathy (a proinflammatory and procoagulant state) and liver injury in COVID-19. METHODS: Coagulopathy, endotheliopathy, and alanine aminotransferase (ALT) were retrospectively analyzed in a subset (n = 68), followed by a larger cohort (n = 3,780) of patients with COVID-19. Liver histology from 43 patients with COVID-19 was analyzed for endotheliopathy and its relationship to liver injury. Primary human LSECs were used to establish the IL-6 trans-signaling mechanism. RESULTS: Factor VIII, fibrinogen, D-dimer, von Willebrand factor (vWF) activity/antigen (biomarkers of coagulopathy/endotheliopathy) were significantly elevated in patients with COVID-19 and liver injury (elevated ALT). IL-6 positively correlated with vWF antigen (p = 0.02), factor VIII activity (p = 0.02), and D-dimer (p <0.0001). On liver histology, patients with COVID-19 and elevated ALT had significantly increased vWF and platelet staining, supporting a link between liver injury, coagulopathy, and endotheliopathy. Intralobular neutrophils positively correlated with platelet (p <0.0001) and vWF (p <0.01) staining, and IL-6 levels positively correlated with vWF staining (p <0.01). IL-6 trans-signaling leads to increased expression of procoagulant (factor VIII, vWF) and proinflammatory factors, increased cell surface vWF (p <0.01), and increased platelet attachment in LSECs. These effects were blocked by soluble glycoprotein 130 (IL-6 trans-signaling inhibitor), the JAK inhibitor ruxolitinib, and STAT1/3 small-interfering RNA knockdown. Hepatocyte fibrinogen expression was increased by the supernatant of LSECs subjected to IL-6 trans-signaling. CONCLUSION: IL-6 trans-signaling drives the coagulopathy and hepatic endotheliopathy associated with COVID-19 and could be a possible mechanism behind liver injury in these patients. LAY SUMMARY: Patients with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection often have liver injury, but why this occurs remains unknown. High levels of interleukin-6 (IL-6) and its circulating receptor, which form a complex to induce inflammatory signals, have been observed in patients with COVID-19. This paper demonstrates that the IL-6 signaling complex causes harmful changes to liver sinusoidal endothelial cells and may promote blood clotting and contribute to liver injury.


Subject(s)
COVID-19/complications , Endothelial Cells/pathology , Interleukin-6/physiology , Liver Diseases/etiology , SARS-CoV-2 , Adult , Blood Coagulation Disorders/etiology , Fibrinogen/analysis , Humans , Interleukin-6/blood , Janus Kinase 1/metabolism , Nitriles , Pyrazoles/pharmacology , Pyrimidines , Retrospective Studies , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , von Willebrand Factor/analysis
14.
Nat Med ; 27(7): 1178-1186, 2021 07.
Article in English | MEDLINE | ID: covidwho-1217708

ABSTRACT

Recent studies have provided insights into innate and adaptive immune dynamics in coronavirus disease 2019 (COVID-19). However, the exact features of antibody responses that govern COVID-19 disease outcomes remain unclear. In this study, we analyzed humoral immune responses in 229 patients with asymptomatic, mild, moderate and severe COVID-19 over time to probe the nature of antibody responses in disease severity and mortality. We observed a correlation between anti-spike (S) immunoglobulin G (IgG) levels, length of hospitalization and clinical parameters associated with worse clinical progression. Although high anti-S IgG levels correlated with worse disease severity, such correlation was time dependent. Deceased patients did not have higher overall humoral response than discharged patients. However, they mounted a robust, yet delayed, response, measured by anti-S, anti-receptor-binding domain IgG and neutralizing antibody (NAb) levels compared to survivors. Delayed seroconversion kinetics correlated with impaired viral control in deceased patients. Finally, although sera from 85% of patients displayed some neutralization capacity during their disease course, NAb generation before 14 d of disease onset emerged as a key factor for recovery. These data indicate that COVID-19 mortality does not correlate with the cross-sectional antiviral antibody levels per se but, rather, with the delayed kinetics of NAb production.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Carrier State/immunology , Female , Humans , Immunity, Humoral , Kinetics , Length of Stay/statistics & numerical data , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors
16.
Blood Adv ; 5(5): 1164-1177, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1105683

ABSTRACT

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of more than 3300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, hepatocyte growth factor, interleukin-8, and granulocyte colony-stimulating factor, which were the strongest predictors of critical illness. Evidence of neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, these data suggest a central role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular markers that distinguish patients at risk of future clinical decompensation.


Subject(s)
COVID-19/immunology , Neutrophil Activation , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Critical Illness/epidemiology , Critical Illness/mortality , Cross-Sectional Studies , Female , Hospitalization , Humans , Machine Learning , Male , Middle Aged , Prognosis , SARS-CoV-2/immunology , Severity of Illness Index
17.
Chest ; 158(4): 1397-1408, 2020 10.
Article in English | MEDLINE | ID: covidwho-996748

ABSTRACT

BACKGROUND: Tocilizumab, an IL-6 receptor antagonist, can be used to treat cytokine release syndrome (CRS), with observed improvements in a coronavirus disease 2019 (COVID-19) case series. RESEARCH QUESTION: The goal of this study was to determine if tocilizumab benefits patients hospitalized with COVID-19. STUDY DESIGN AND METHODS: This observational study of consecutive COVID-19 patients hospitalized between March 10, 2020, and March 31, 2020, and followed up through April 21, 2020, was conducted by chart review. Patients were treated with tocilizumab using an algorithm that targeted CRS. Survival and mechanical ventilation (MV) outcomes were reported for 14 days and stratified according to disease severity designated at admission (severe, ≥ 3 L supplemental oxygen to maintain oxygen saturation > 93%). For tocilizumab-treated patients, pre/post analyses of clinical response, biomarkers, and safety outcomes were assessed. Post hoc survival analyses were conducted for race/ethnicity. RESULTS: Among the 239 patients, median age was 64 years; 36% and 19% were black and Hispanic, respectively. Hospital census increased exponentially, yet MV census did not. Severe disease was associated with lower survival (78% vs 93%; P < .001), greater proportion requiring MV (44% vs 5%; P < .001), and longer median MV days (5.5 vs 1.0; P = .003). Tocilizumab-treated patients (n = 153 [64%]) comprised 90% of those with severe disease; 44% of patients with nonsevere disease received tocilizumab for evolving CRS. Tocilizumab-treated patients with severe disease had higher admission levels of high-sensitivity C-reactive protein (120 vs 71 mg/L; P < .001) and received tocilizumab sooner (2 vs 3 days; P < .001), but their survival was similar to that of patients with nonsevere disease (83% vs 91%; P = .11). For tocilizumab-treated patients requiring MV, survival was 75% (95% CI, 64-89). Following tocilizumab treatment, few adverse events occurred, and oxygenation and inflammatory biomarkers (eg, high-sensitivity C-reactive protein, IL-6) improved; however, D-dimer and soluble IL-2 receptor (also termed CD25) levels increased significantly. Survival in black and Hispanic patients, after controlling for age, was significantly higher than in white patients (log-rank test, P = .002). INTERPRETATION: A treatment algorithm that included tocilizumab to target CRS may influence MV and survival outcomes. In tocilizumab-treated patients, oxygenation and inflammatory biomarkers improved, with higher than expected survival. Randomized trials must confirm these findings.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19 , Coronavirus Infections/mortality , Cytokine Release Syndrome/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Respiration, Artificial , SARS-CoV-2 , Survival Rate , Treatment Outcome , Young Adult
18.
Pulm Circ ; 10(4): 2045894020966547, 2020.
Article in English | MEDLINE | ID: covidwho-978886

ABSTRACT

Increase in thrombotic and microvascular complications is emerging to be a key feature of patients with critical illness associated with COVID-19 infection. While endotheliopathy is thought to be a key factor of COVID-19-associated coagulopathy, markers indicative of this process that are prognostic of disease severity have not been well-established in this patient population. Using plasma profiling of patients with COVID-19, we identified circulating markers that segregated with disease severity: markers of angiogenesis (VEGF-A, PDGF-AA and PDGF-AB/BB) were elevated in hospitalized patients with non-critical COVID-19 infection, while markers of endothelial injury (angiopoietin-2, FLT-3L, PAI-1) were elevated in patients with critical COVID-19 infection. In survival analysis, elevated markers of endothelial injury (angiopoietin-2, follistatin, PAI-1) were strongly predictive of in-hospital mortality. Our findings demonstrate that non-critical and critical phases of COVID-19 disease may be driven by distinct mechanisms involving key aspects of endothelial cell function, and identify drivers of COVID-19 pathogenesis and potential targets for future therapies.

19.
Nat Rev Cardiol ; 18(3): 194-209, 2021 03.
Article in English | MEDLINE | ID: covidwho-936141

ABSTRACT

The core pathology of coronavirus disease 2019 (COVID-19) is infection of airway cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in excessive inflammation and respiratory disease, with cytokine storm and acute respiratory distress syndrome implicated in the most severe cases. Thrombotic complications are a major cause of morbidity and mortality in patients with COVID-19. Patients with pre-existing cardiovascular disease and/or traditional cardiovascular risk factors, including obesity, diabetes mellitus, hypertension and advanced age, are at the highest risk of death from COVID-19. In this Review, we summarize new lines of evidence that point to both platelet and endothelial dysfunction as essential components of COVID-19 pathology and describe the mechanisms that might account for the contribution of cardiovascular risk factors to the most severe outcomes in COVID-19. We highlight the distinct contributions of coagulopathy, thrombocytopathy and endotheliopathy to the pathogenesis of COVID-19 and discuss potential therapeutic strategies in the management of patients with COVD-19. Harnessing the expertise of the biomedical and clinical communities is imperative to expand the available therapeutics beyond anticoagulants and to target both thrombocytopathy and endotheliopathy. Only with such collaborative efforts can we better prepare for further waves and for future coronavirus-related pandemics.


Subject(s)
Blood Coagulation Disorders/blood , Blood Platelet Disorders/blood , COVID-19/blood , Endothelium, Vascular/physiopathology , Inflammation/blood , Thrombosis/blood , Administration, Inhalation , Anticoagulants/therapeutic use , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/physiopathology , Blood Platelet Disorders/drug therapy , Blood Platelet Disorders/etiology , Blood Platelet Disorders/physiopathology , COVID-19/complications , COVID-19/drug therapy , COVID-19/physiopathology , Endothelium-Dependent Relaxing Factors/therapeutic use , Epoprostenol/therapeutic use , Heart Disease Risk Factors , Humans , Iloprost/therapeutic use , Inflammation/etiology , Inflammation/physiopathology , Nitric Oxide/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/physiopathology , Thrombosis/etiology , Thrombosis/immunology , Thrombotic Microangiopathies/blood , Thrombotic Microangiopathies/drug therapy , Thrombotic Microangiopathies/etiology , Thrombotic Microangiopathies/physiopathology , Vascular Diseases/blood , Vascular Diseases/drug therapy , Vascular Diseases/etiology , Vascular Diseases/physiopathology , Vasodilator Agents/therapeutic use , Venous Thromboembolism/blood , Venous Thromboembolism/drug therapy , Venous Thromboembolism/etiology , Venous Thromboembolism/physiopathology
20.
medRxiv ; 2020 Jul 01.
Article in English | MEDLINE | ID: covidwho-636231

ABSTRACT

Despite over 9.3 million infected and 479,000 deaths, the pathophysiological factors that determine the wide spectrum of clinical outcomes in COVID-19 remain inadequately defined. Importantly, patients with underlying cardiovascular disease have been found to have worse clinical outcomes,1 and autopsy findings of endotheliopathy as well as angiogenesis in COVID-19 have accumulated.2,3 Nonetheless, circulating vascular markers associated with disease severity and mortality have not been reliably established. To address this limitation and better understand COVID-19 pathogenesis, we report plasma profiling of factors related to the vascular system from a series of patients admitted to Yale-New Haven Hospital with confirmed diagnosis of COVID-19 via PCR, which demonstrate significant increase in markers of angiogenesis and endotheliopathy in patients hospitalized with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL