Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
PLoS One ; 17(3): e0249723, 2022.
Article in English | MEDLINE | ID: covidwho-1896431

ABSTRACT

Approximately 10% of infants infected with SARS-CoV-2 will experience COVID-19 illness requiring advanced care. A potential mechanism to protect this population is passive immunization via the milk of a previously infected person. We and others have reported on the presence of SARS-CoV-2-specific antibodies in human milk. We now report the prevalence of SARS-CoV-2 IgA in the milk of 74 COVID-19-recovered participants, and find that 89% of samples are positive for Spike-specific IgA. In a subset of these samples, 95% exhibited robust IgA activity as determined by endpoint binding titer, with 50% considered high-titer. These IgA-positive samples were also positive for Spike-specific secretory antibody. Levels of IgA antibodies and secretory antibodies were shown to be strongly positively correlated. The secretory IgA response was dominant among the milk samples tested compared to the IgG response, which was present in 75% of samples and found to be of high-titer in only 13% of cases. Our IgA durability analysis using 28 paired samples, obtained 4-6 weeks and 4-10 months after infection, found that all samples exhibited persistently significant Spike-specific IgA, with 43% of donors exhibiting increasing IgA titers over time. Finally, COVID-19 and pre-pandemic control milk samples were tested for the presence of neutralizing antibodies; 6 of 8 COVID-19 samples exhibited neutralization of Spike-pseudotyped VSV (IC50 range, 2.39-89.4ug/mL) compared to 1 of 8 controls. IgA binding and neutralization capacities were found to be strongly positively correlated. These data are highly relevant to public health, not only in terms of the protective capacity of these antibodies for breastfed infants, but also for the potential use of such antibodies as a COVID-19 therapeutic, given that secretory IgA is highly in all mucosal compartments.


Subject(s)
Antibodies, Neutralizing/immunology , Immunoglobulin A/immunology , Milk, Human/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/metabolism , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Immunoglobulin A/metabolism , Neutralization Tests , SARS-CoV-2/isolation & purification , Young Adult
2.
mBio ; 13(2): e0297921, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1769827

ABSTRACT

The emergence of several new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in recent months has raised concerns around the potential impact on ongoing vaccination programs. Data from clinical trials and real-world evidence suggest that current vaccines remain highly effective against the alpha variant (B.1.1.7), while some vaccines have reduced efficacy and effectiveness against symptomatic disease caused by the beta variant (B.1.351) and the delta variant (B.1.617.2); however, effectiveness against severe disease and hospitalization caused by delta remains high. Although data on the effectiveness of the primary regimen against omicron (B.1.1.529) are limited, booster programs using mRNA vaccines have been shown to restore protection against infection and symptomatic disease (regardless of the vaccine used for the primary regimen) and maintain high effectiveness against hospitalization. However, effectiveness against infection and symptomatic disease wanes with time after the booster dose. Studies have demonstrated reductions of varying magnitude in neutralizing activity of vaccine-elicited antibodies against a range of SARS-CoV-2 variants, with the omicron variant in particular exhibiting partial immune escape. However, evidence suggests that T-cell responses are preserved across vaccine platforms, regardless of variant of concern. Nevertheless, various mitigation strategies are under investigation to address the potential for reduced efficacy or effectiveness against current and future SARS-CoV-2 variants, including modification of vaccines for certain variants (including omicron), multivalent vaccine formulations, and different delivery mechanisms.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mutation , SARS-CoV-2/genetics
3.
Cell Rep ; 38(10): 110434, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1729611

ABSTRACT

Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.


Subject(s)
DEAD Box Protein 58 , Interferon Type I , RNA Helicases , RNA, Viral , Receptors, Immunologic , Zika Virus Infection , Zika Virus , COVID-19 , DEAD Box Protein 58/immunology , Humans , Immunity, Innate , Interferon Type I/immunology , RNA Helicases/immunology , Receptors, Immunologic/immunology , SARS-CoV-2 , Tripartite Motif Proteins , Zika Virus/genetics , Zika Virus Infection/immunology
4.
Acta Pharm Sin B ; 12(4): 1624-1635, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1712445

ABSTRACT

SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.

5.
Lancet Reg Health Am ; 6: 100123, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1693154

ABSTRACT

BACKGROUND: Gam-COVID-Vac (SPUTNIK V) has been granted emergency use authorization in 70 nations and has been administered to millions worldwide. However, there are very few peer-reviewed studies describing its effects. Independent reports regarding safety and effectiveness could accelerate the final approval by the WHO. We aimed to study the long-term humoral immune response in naïve and previously infected volunteers who received SPUTNIK V. METHODS: Humoral immune responses, assayed by anti-SARS-CoV-2-spike-RBD IgG ELISA and neutralization assays, were measured in 602 healthcare workers at 0, 14, 28, 60 and 180 days after receiving SPUTNIK V between December 2020 and July 2021 in Tucumán, Argentina. FINDINGS: Seroconversion was detected in 97% of individuals after 28 days post-vaccination (dpv) (N = 405). Anti-RBD titers began to decrease after 60 dpv (N = 328), but remained detectable in 94% at 90 dpv (N = 224). At 180 dpv, anti-RDB titers persisted in 31% (N = 146). Previous infection triggered an increased immune response to the first dose and increased neutralization activity against variants of concern (VOC). Second doses in previously infected individuals further increased titers, even 90 dpv (N = 75). Basal antibody titers had more influence on post-vaccination anti-RBD responses than the time elapsed between diagnosis and vaccination (N = 274). INTERPRETATION: Data presented herein provides essential knowledge regarding the kinetics of antibodies induced by SPUTNIK V up to six months after immunization, and suggests that when considering one-dose vaccination policies for individuals with previous SARS-CoV-2 infection, serological studies to determine basal titers may be important, independent of when diagnosis occurred. FUNDING: Tucumán Public Health System (SIPROSA), Argentinean National Research Council (CONICET), National University of Tucumán (UNT).

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-307968

ABSTRACT

Background: Gam-COVID-Vac, also known as SPUTNIK V, is the first COVID-19 vaccine registered, has emergency use authorization in 70 nations, and has been administered to millions worldwide. However, there are very few peer-reviewed studies describing its effects. As independent reports begin to be published, a more accurate picture regarding safety and effectiveness could accelerate approval by the WHO.Methods: An ELISA that detects anti-SARS-CoV-2-spike-RBD IgG was used, in both transversal and longitudinal studies, to analyze humoral immune responses in 602 healthcare workers who received SPUTNIK V between December 2020 and July 2021.Findings: Seroconversion was detected in 97% of individuals after 28 days post-vaccination (dpv). Anti-RBD titers began to decrease after 60 dpv, but remained detectable in 94% of volunteers at 90 dpv. At 180 dpv, anti-RDB titers persisted in 31% of volunteers. Previous SARS-CoV-2 infection triggered increased immune response to the first dose, and increased neutralization activity against different variants of concern. The second dose in previously infected individuals further increased anti-RBD titers, even after 90 dpv. However, not all individuals with previous infection responded equally, as only those with basal titers above a certain threshold showed robust responses. Time elapsed between COVID-19 diagnosis and vaccination did not influence titers elicited.Interpretation: Data presented herein provides essential knowledge regarding the kinetics of antibodies induced by SPUTNIK V up to six months after immunization, and suggests that when considering one-dose vaccination policies for individuals with previous SARS-CoV-2 infection, serological studies to determine basal titers may be important, independent of when diagnosis occurred.Funding Statement: This research was supported by the Ministry of Public Health of Tucumán (Argentina), Argentinean Research Council-CONICET (PIP 722 and 806), Argentinean Research Agency-MINCYT grants (PICT-2018-3379 and PICT2018-02989), National University of Tucuman (PIUNT-UNT D644/1 and D624), and Florencio Fiorini Foundation.Declaration of Interests: B. L. is a named inventor on a patent filed by the Icahn School of Medicine which includes the 293T-ACE2-TMPRSS2 (F8-2) cells used for the virus neutralization assay. All other have nothing to declare. Ethics Approval Statement: Protocols were approved by the regional ethics research boards (Ex. N° 3929-410-P-2020), following the Declaration of Helsinki. Personal data from all volunteers were encrypted. Eligibility criteria were age between 18 to 60 years without any COVID-19 symptoms at the time of vaccination. Individuals provided a signed informed consent to be included in the database of the present study.

7.
mSphere ; 7(1): e0088321, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1673356

ABSTRACT

Considering the urgent demand for faster methods to quantify neutralizing antibody titers in patients with coronavirus (CoV) disease 2019 (COVID-19), developing an analytical model or method to replace the conventional virus neutralization test (NT) is essential. Moreover, a "COVID-19 immunity passport" is currently being proposed as a certification for people who travel internationally. Therefore, an enzyme-linked immunosorbent assay (ELISA) was designed to detect severe acute respiratory syndrome CoV 2 (SARS-CoV-2)-neutralizing antibodies in serum, which is based on the binding affinity of SARS-CoV-2 viral spike protein 1 (S1) and the viral spike protein receptor-binding domain (RBD) to antibodies. The RBD is considered the major binding region of neutralizing antibodies. Furthermore, S1 covers the RBD and several other regions, which are also important for neutralizing antibody binding. In this study, we assessed 144 clinical specimens, including those from patients with PCR-confirmed SARS-CoV-2 infections and healthy donors, using both the NT and ELISA. The ELISA results analyzed by spline regression and the two-variable generalized additive model precisely reflected the NT value, and the correlation between predicted and actual NT values was as high as 0.917. Therefore, our method serves as a surrogate to quantify neutralizing antibody titer. The analytic method and platform used in this study present a new perspective for serological testing of SARS-CoV-2 infection and have clinical potential to assess vaccine efficacy. IMPORTANCE Herein, we present a new approach for serological testing for SARS-CoV-2 antibodies using innovative laboratory methods that demonstrate a combination of biology and mathematics. The traditional virus neutralization test is the gold standard method; however, it is time-consuming and poses a risk to medical personnel. Thus, there is a demand for methods that rapidly quantify neutralizing antibody titers in patients with COVID-19 or examine vaccine efficacy at a biosafety level 2 containment facility. Therefore, we used a two-variable generalized additive model to analyze the results of the enzyme-linked immunosorbent assay and found the method to serve as a surrogate to quantify neutralizing antibody titers. This methodology has potential for clinical use in assessing vaccine efficacy.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Models, Immunological , Models, Statistical , Neutralization Tests/methods , SARS-CoV-2/immunology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Case-Control Studies , Humans , Regression Analysis
8.
Front Immunol ; 12: 759688, 2021.
Article in English | MEDLINE | ID: covidwho-1605844

ABSTRACT

Antibodies (Abs) are essential for the host immune response against SARS-CoV-2, and all the vaccines developed so far have been designed to induce Abs targeting the SARS-CoV-2 spike. Many studies have examined Ab responses in the blood from vaccinated and infected individuals. However, since SARS-CoV-2 is a respiratory virus, it is also critical to understand the mucosal Ab responses at the sites of initial virus exposure. Here, we examined plasma versus saliva Ab responses in vaccinated and convalescent patients. Although saliva levels were significantly lower, a strong correlation was observed between plasma and saliva total Ig levels against all SARS-CoV-2 antigens tested. Virus-specific IgG1 responses predominated in both saliva and plasma, while a lower prevalence of IgM and IgA1 Abs was observed in saliva. Antiviral activities of plasma Abs were also studied. Neutralization titers against the initial WA1 (D614G), B.1.1.7 (alpha) and B.1.617.2 (delta) strains were similar but lower against the B.1.351 (beta) strain. Spike-specific antibody-dependent cellular phagocytosis (ADCP) activities were also detected and the levels correlated with spike-binding Ig titers. Interestingly, while neutralization and ADCP potencies of vaccinated and convalescent groups were comparable, enhanced complement deposition to spike-specific Abs was noted in vaccinated versus convalescent groups and corresponded with higher levels of IgG1 plus IgG3 among the vaccinated individuals. Altogether, this study demonstrates the detection of Ab responses after vaccination or infection in plasma and saliva that correlate significantly, although Ig isotypic differences were noted. The induced plasma Abs displayed Fab-mediated and Fc-dependent functions with comparable neutralization and ADCP potencies, but a greater capacity to activate complement was elicited upon vaccination.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Saliva/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Saliva/virology , Vaccination
9.
PLoS Pathog ; 17(1): e1009161, 2021 01.
Article in English | MEDLINE | ID: covidwho-1388959

ABSTRACT

We report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina. The assays, COVIDAR IgG and IgM, which were produced and provided for free to health authorities, private and public health institutions and nursing homes, use a combination of a trimer stabilized spike protein and the receptor binding domain (RBD) in a single enzyme-linked immunosorbent assay (ELISA) plate. Over half million tests have already been distributed to detect and quantify antibodies for multiple purposes, including assessment of immune responses in hospitalized patients and large seroprevalence studies in neighborhoods, slums and health care workers, which resulted in a powerful tool for asymptomatic detection and policy making in the country. Analysis of antibody levels and longitudinal studies of symptomatic and asymptomatic SARS-CoV-2 infections in over one thousand patient samples provided insightful information about IgM and IgG seroconversion time and kinetics, and IgM waning profiles. At least 35% of patients showed seroconversion within 7 days, and 95% within 45 days of symptoms onset, with simultaneous or close sequential IgM and IgG detection. Longitudinal studies of asymptomatic cases showed a wide range of antibody responses with median levels below those observed in symptomatic patients. Regarding convalescent plasma applications, a protocol was standardized for the assessment of end point IgG antibody titers with COVIDAR with more than 500 plasma donors. The protocol showed a positive correlation with neutralizing antibody titers, and was used for clinical trials and therapies across the country. Using this protocol, about 80% of convalescent donor plasmas were potentially suitable for therapies. Here, we demonstrate the importance of providing a robust and specific serologic assay for generating new information about antibody kinetics in infected individuals and mitigation policies to cope with pandemic needs.


Subject(s)
COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , Argentina/epidemiology , COVID-19/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies
10.
Curr Opin Virol ; 50: 49-58, 2021 10.
Article in English | MEDLINE | ID: covidwho-1345304

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), like other coronaviruses, relies on a flexible array of entry mechanisms, driven by the spike (S) protein. Entry is dependent on proteolytic priming, activation, and receptor binding; all of which can be variable, dependent on context. Here we review the implications of the complexity of SARS-CoV-2 entry pathways on entry assays that then drive our understanding of humoral immunity, therapeutic efficacy, and tissue restriction. We focus especially on the proteolytic activation of SARS-CoV-2 spike and how this constellation of proteases lends deeper insight to our understanding of arising variants and their putative role transmission or variable pathogenicity in vivo. In this review, we argue for better universal standards to assay virus entry as well as suggest best practices for reporting viral passage number, the cell line used, and proteases present, among other important considerations.


Subject(s)
COVID-19/etiology , Peptide Hydrolases/physiology , SARS-CoV-2/physiology , Virus Internalization , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
Nat Commun ; 12(1): 4598, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327197

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected at least 180 million people since its identification as the cause of the current COVID-19 pandemic. The rapid pace of vaccine development has resulted in multiple vaccines already in use worldwide. The contemporaneous emergence of SARS-CoV-2 'variants of concern' (VOC) across diverse geographic locales underscores the need to monitor the efficacy of vaccines being administered globally. All WHO designated VOC carry spike (S) polymorphisms thought to enable escape from neutralizing antibodies. Here, we characterize the neutralizing activity of post-Sputnik V vaccination sera against the ensemble of S mutations present in alpha (B.1.1.7) and beta (B.1.351) VOC. Using de novo generated replication-competent vesicular stomatitis virus expressing various SARS-CoV-2-S in place of VSV-G (rcVSV-CoV2-S), coupled with a clonal 293T-ACE2 + TMPRSS2 + cell line optimized for highly efficient S-mediated infection, we determine that only 1 out of 12 post-vaccination serum samples shows effective neutralization (IC90) of rcVSV-CoV2-S: B.1.351 at full serum strength. The same set of sera efficiently neutralize S from B.1.1.7 and exhibit only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of some emergent SARS-CoV-2 variants may benefit from updated vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Female , HEK293 Cells , Humans , Immune Sera/immunology , Male , Middle Aged , Mutation , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Vaccination/methods , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology , Virus Internalization/drug effects , Virus Replication/drug effects , Virus Replication/genetics , Virus Replication/immunology
12.
J Infect Dis ; 223(6): 957-970, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1174906

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and -RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin isotypes capable of blocking infection. METHODS: We studied spike- and RBD-specific immunoglobulin isotypes in convalescent and acute plasma/serum samples using a multiplex bead assay. We also determined virus neutralization activities in plasma and serum samples, and purified immunoglobulin fractions using a vesicular stomatitis pseudovirus assay. RESULTS: Spike- and RBD-specific immunoglobulin (Ig) M, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions' neutralization potency. IgA also exhibited neutralizing activity, but with lower potency. CONCLUSION: IgG, IgM, and IgA are critical components of convalescent plasma used for treatment of coronavirus disease 2019 (COVID-19).


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/therapy , Immunoglobulin A/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19 Testing , Female , Humans , Immunization, Passive , Immunoglobulin A/therapeutic use , Immunoglobulin G/blood , Immunoglobulin G/therapeutic use , Immunoglobulin Isotypes/blood , Immunoglobulin Isotypes/therapeutic use , Immunoglobulin M/therapeutic use , Male , Neutralization Tests , Spike Glycoprotein, Coronavirus/immunology
13.
mBio ; 12(1)2021 02 16.
Article in English | MEDLINE | ID: covidwho-1088198

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week.IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests
14.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064906

ABSTRACT

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus Internalization
15.
Nature ; 591(7849): 293-299, 2021 03.
Article in English | MEDLINE | ID: covidwho-1046014

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic1-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses2. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2. However, the ΔPRRA mutant had reduced replication in a human respiratory cell line and was attenuated in both hamster and K18-hACE2 transgenic mouse models of SARS-CoV-2 pathogenesis. Despite reduced disease, the ΔPRRA mutant conferred protection against rechallenge with the parental SARS-CoV-2. Importantly, the neutralization values of sera from patients with coronavirus disease 2019 (COVID-19) and monoclonal antibodies against the receptor-binding domain of SARS-CoV-2 were lower against the ΔPRRA mutant than against parental SARS-CoV-2, probably owing to an increased ratio of particles to plaque-forming units in infections with the former. Together, our results demonstrate a critical role for the furin cleavage site in infection with SARS-CoV-2 and highlight the importance of this site for evaluating the neutralization activities of antibodies.


Subject(s)
COVID-19/virology , Furin/metabolism , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , COVID-19/pathology , COVID-19/physiopathology , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Humans , Lung Diseases/pathology , Lung Diseases/physiopathology , Lung Diseases/virology , Male , Mice , Mice, Transgenic , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Proteolysis , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Replication/genetics
16.
Emerg Microbes Infect ; 10(1): 178-195, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-998195

ABSTRACT

The genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of cytokines and inflammatory responThe genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of cytokines and inflammatory response observed in COVID-19 patients. We demonstrate that in the mouse NLRP12 protein, one of the recognition site is not cleaved in our in-vitro assay. We pushed this comparative alignment of IRF-3 and NLRP12 homologs and show that the lack or presence of cognate cleavage motifs in IRF-3 and NLRP12 could contribute to the presentation of disease in cats and tigers, for example. Our findings provide an explanatory framework for indepth studies into the pathophysiology of COVID-19.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Interferon Regulatory Factor-3/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Amino Acid Sequence , Animals , COVID-19/pathology , Cell Line , Chiroptera/virology , Coronavirus 3C Proteases/genetics , Coronavirus Papain-Like Proteases/genetics , HEK293 Cells , Humans , Mice , SARS-CoV-2/enzymology , SARS-CoV-2/genetics
17.
mSphere ; 5(4)2020 07 08.
Article in English | MEDLINE | ID: covidwho-639765

ABSTRACT

Nipah disease is listed as one of the WHO priority diseases that pose the greatest public health risk due to their epidemic potential. More than 200 experts from around the world convened in Singapore last year to mark the 20th anniversary of the first Nipah virus outbreaks in Malaysia and Singapore. Most of these experts are now involved in responding to the coronavirus disease 2019 (COVID-19) pandemic. Here, members of the Organizing Committee of the 2019 Nipah Virus International Conference review highlights from the Nipah@20 Conference and reflect on key lessons learned from Nipah that could be applied to the understanding of the COVID-19 pandemic and to preparedness against future emerging infectious diseases (EIDs) of pandemic potential.


Subject(s)
Henipavirus Infections , Nipah Virus/pathogenicity , Animals , Betacoronavirus/pathogenicity , COVID-19 , Congresses as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Henipavirus Infections/diagnosis , Henipavirus Infections/prevention & control , Henipavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2 , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL