Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Virol J ; 20(1): 112, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-20236982


BACKGROUND/AIMS: Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best policies to control COVID-19 pandemic. The serological response to COVID-19 vaccination in Taiwanese patients with different comorbidities is elusive. METHODS: Uninfected subjects who received 3 doses of mRNA vaccines (BNT162b2 [Pfizer-BioNTech, BNT] and mRNA-1273 [Moderna]), viral vector-based vaccines (ChAdOx1-S (AZD1222, AZ) or protein subunit vaccines (Medigen COVID-19 vaccine) were prospectively enrolled. The SARS-CoV-2-IgG spike antibody level was determined within three months after the 3rd dose of vaccination. The Charlson Comorbidity Index (CCI) was applied to determine the association between vaccine titers and underlying comorbidities. RESULTS: A total of 824 subjects were enrolled in the current study. The proportions of CCI scores of 0-1, 2-3 and > 4 were 52.8% (n = 435), 31.3% (n = 258) and 15.9% (n = 131), respectively. The most commonly used vaccination combination was AZ-AZ-Moderna (39.2%), followed by Moderna-Moderna-Moderna (27.8%). The mean vaccination titer was 3.11 log BAU/mL after a median of 48 days after the 3rd dose. Factors associated with potentially effective neutralization capacity (IgG level ≥ 4160 AU/mL) included age ≥ 60 years (odds ratio [OR]/95% confidence interval [CI]: 0.50/0.34-0.72, P < 0.001), female sex (OR/CI: 1.85/1.30-2.63, P = 0.001), Moderna-Moderna-based vaccination (compared to AZ-AZ-based vaccination, OR/CI: 6.49/3.90-10.83, P < 0.001), BNT-BNT-based vaccination (compared to AZ-AZ-based vaccination, OR/CI: 7.91/1.82-34.3, P = 0.006) and a CCI score ≥ 4 (OR/CI: 0.53/0.34-0.82, P = 0.004). There was a decreasing trend in antibody titers with increasing CCI scores (trend P < 0.001). Linear regression analysis revealed that higher CCI scores (ß: - 0.083; 95% CI: - 0.094-0.011, P = 0.014) independently correlated with low IgG spike antibody levels. CONCLUSIONS: Subjects with more comorbidities had a poor serological response to 3 doses of COVID-19 vaccination.

COVID-19 Vaccines , COVID-19 , Humans , Female , Middle Aged , BNT162 Vaccine , ChAdOx1 nCoV-19 , Pandemics , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Comorbidity , Immunoglobulin G
J Microbiol Immunol Infect ; 56(2): 207-235, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2246412


Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.

COVID-19 , Mycoses , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Taiwan/epidemiology , Pandemics , Mycoses/diagnosis , Mycoses/drug therapy , COVID-19 Testing
J Microbiol Immunol Infect ; 56(3): 442-454, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2241580


COVID-19-associated mold infection (CAMI) is defined as development of mold infections in COVID-19 patients. Co-pathogenesis of viral and fungal infections include the disruption of tissue barrier following SARS CoV-2 infection with the damage in the alveolar space, respiratory epithelium and endothelium injury and overwhelming inflammation and immune dysregulation during severe COVID-19. Other predisposing risk factors permissive to fungal infections during COVID-19 include the administration of immune modulators such as corticosteroids and IL-6 antagonist. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) is increasingly reported during the COVID-19 pandemic. CAPA usually developed within the first month of COVID infection, and CAM frequently arose 10-15 days post diagnosis of COVID-19. Diagnosis is challenging and often indistinguishable during the cytokine storm in COVID-19, and several diagnostic criteria have been proposed. Development of CAPA and CAM is associated with a high mortality despiteappropriate anti-mold therapy. Both isavuconazole and amphotericin B can be used for treatment of CAPA and CAM; voriconazole is the primary agent for CAPA and posaconazole is an alternative for CAM. Aggressive surgery is recommended for CAM to improve patient survival. A high index of suspicion and timely and appropriate treatment is crucial to improve patient outcome.

COVID-19 , Mucormycosis , Pulmonary Aspergillosis , Humans , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Pandemics , COVID-19/complications , Fungi