Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 13(11)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1481020

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, threatens the entire world. It has affected every aspect of life and increased the burden on both healthcare and socioeconomic systems. Current studies have revealed that excessive inflammatory immune responses are responsible for the severity of COVID-19, which suggests that anti-inflammatory drugs may be promising therapeutic treatments. However, there are currently a limited number of approved therapeutics for COVID-19. Toll-like receptors (TLRs), which recognize microbial components derived from invading pathogens, are involved in both the initiation of innate responses against SARS-CoV-2 infection and the hyperinflammatory phenotype of COVID-19. In this review, we provide current knowledge on the pivotal role of TLRs in immune responses against SARS-CoV-2 infection and demonstrate the potential effectiveness of TLR-targeting drugs on the control of hyperinflammation in patients with COVID-19.


Subject(s)
COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , Toll-Like Receptors/immunology , Animals , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Cytokine Release Syndrome , Humans , SARS-CoV-2/physiology , Severity of Illness Index , Systemic Inflammatory Response Syndrome/complications , Systemic Inflammatory Response Syndrome/drug therapy , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
2.
Vaccines (Basel) ; 9(5)2021 May 19.
Article in English | MEDLINE | ID: covidwho-1234847

ABSTRACT

The novel coronavirus, SARS-CoV-2, which causes COVID-19, has resulted in a pandemic with millions of deaths. To eradicate SARS-CoV-2 and prevent further infections, many vaccine candidates have been developed. These vaccines include not only traditional subunit vaccines and attenuated or inactivated viral vaccines but also nucleic acid and viral vector vaccines. In contrast to the diversity in the platform technology, the delivery of vaccines is limited to intramuscular vaccination. Although intramuscular vaccination is safe and effective, mucosal vaccination could improve the local immune responses that block the spread of pathogens. However, a lack of understanding of mucosal immunity combined with the urgent need for a COVID-19 vaccine has resulted in only intramuscular vaccinations. In this review, we summarize the history of vaccines, current progress in COVID-19 vaccine technology, and the status of intranasal COVID-19 vaccines. Future research should determine the most effective route for vaccine delivery based on the platform and determine the mechanisms that underlie the efficacy of different delivery routes.

3.
Immune Netw ; 21(1): e10, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1138874

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic (severe acute respiratory syndrome coronavirus 2) is a global infectious disease with rapid spread. Some patients have severe symptoms and clinical signs caused by an excessive inflammatory response, which increases the risk of mortality. In this study, we reanalyzed scRNA-seq data of cells from bronchoalveolar lavage fluids of patients with COVID-19 with mild and severe symptoms, focusing on Ab-producing cells. In patients with severe disease, B cells seemed to be more activated and expressed more immunoglobulin genes compared with cells from patients with mild disease, and macrophages expressed higher levels of the TNF superfamily member B-cell activating factor but not of APRIL (a proliferation-inducing ligand). In addition, macrophages from patients with severe disease had increased pro-inflammatory features and pathways associated with Fc receptor-mediated signaling, compared with patients with mild disease. CCR2-positive plasma cells accumulated in patients with severe disease, probably because of increased CCL2 expression on macrophages from patients with severe disease. Together, these results support the hypothesis that different characteristics of B cells might be associated with the severity of COVID-19 infection.

4.
Front Immunol ; 11: 2145, 2020.
Article in English | MEDLINE | ID: covidwho-776206

ABSTRACT

SARS-CoV-2 infection has recently been declared a pandemic. Some patients showing severe symptoms exhibit drastic inflammation and airway damage. In this study, we re-analyzed published scRNA-seq data of COVID-19 patient bronchoalveolar lavage fluid to further classify and compare immunological features according to the patient's disease severity. Patients with severe symptoms showed DNA damage and apoptotic features of epithelial cells. Our results suggested that epithelial damage was associated with neutrophil infiltration. Myeloid cells of severe patients showed higher expression of proinflammatory cytokines and chemokines such as CXCL8. As a result, neutrophils were abundant in lungs of patients from the severe group. Furthermore, recruited neutrophils highly expressed genes related to neutrophil extracellular traps. Neutrophil-mediated inflammation was regulated by glucocorticoid receptor expression and activity. Based on these results, we suggest that severe COVID-19 symptoms may be determined by differential expression of glucocorticoid receptors and neutrophils.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Interleukin-8/genetics , Neutrophils/immunology , Pneumonia, Viral/immunology , Receptors, Glucocorticoid/genetics , Severity of Illness Index , Transcriptome , Adult , Aged , Bronchoalveolar Lavage Fluid/immunology , COVID-19 , Coronavirus Infections/virology , Epithelial Cells/pathology , Extracellular Traps/immunology , Female , Gene Expression Profiling/methods , Humans , Inflammation/immunology , Interleukin-8/metabolism , Male , Middle Aged , Myeloid Cells/immunology , Neutrophil Infiltration/immunology , Pandemics , Pneumonia, Viral/virology , RNA-Seq , Receptors, Glucocorticoid/metabolism , SARS-CoV-2 , Single-Cell Analysis/methods
5.
Sci Immunol ; 5(49)2020 07 10.
Article in English | MEDLINE | ID: covidwho-639363

ABSTRACT

Although most SARS-CoV-2-infected individuals experience mild coronavirus disease 2019 (COVID-19), some patients suffer from severe COVID-19, which is accompanied by acute respiratory distress syndrome and systemic inflammation. To identify factors driving severe progression of COVID-19, we performed single-cell RNA-seq using peripheral blood mononuclear cells (PBMCs) obtained from healthy donors, patients with mild or severe COVID-19, and patients with severe influenza. Patients with COVID-19 exhibited hyper-inflammatory signatures across all types of cells among PBMCs, particularly up-regulation of the TNF/IL-1ß-driven inflammatory response as compared to severe influenza. In classical monocytes from patients with severe COVID-19, type I IFN response co-existed with the TNF/IL-1ß-driven inflammation, and this was not seen in patients with milder COVID-19. Interestingly, we documented type I IFN-driven inflammatory features in patients with severe influenza as well. Based on this, we propose that the type I IFN response plays a pivotal role in exacerbating inflammation in severe COVID-19.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immunophenotyping , Influenza A virus/immunology , Influenza, Human/immunology , Interferon Type I/metabolism , Pneumonia, Viral/immunology , Severity of Illness Index , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Cells, Cultured , Coronavirus Infections/blood , Coronavirus Infections/virology , Female , Healthy Volunteers , Humans , Inflammation/immunology , Influenza, Human/blood , Influenza, Human/virology , Interleukin-1beta/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , RNA-Seq , SARS-CoV-2 , Single-Cell Analysis , Transcriptome , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL