Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Int J Mol Sci ; 23(11)2022 May 30.
Article in English | MEDLINE | ID: covidwho-1869639


The SARS-CoV-2 pandemic has created a global public crisis and heavily affected personal lives, healthcare systems, and global economies. Virus variants are continuously emerging, and, thus, the pandemic has been ongoing for over two years. Vaccines were rapidly developed based on the original SARS-CoV-2 (Wuhan-Hu-1) to build immunity against the coronavirus disease. However, they had a very low effect on the virus' variants due to their low cross-reactivity. In this study, a multivalent SARS-CoV-2 vaccine was developed using ferritin nanocages, which display the spike protein from the Wuhan-Hu-1, B.1.351, or B.1.429 SARS-CoV-2 on their surfaces. We show that the mixture of three SARS-CoV-2 spike-protein-displaying nanocages elicits CD4+ and CD8+ T cells and B-cell immunity successfully in vivo. Furthermore, they generate a more consistent antibody response against the B.1.351 and B.1.429 variants than a monovalent vaccine. This leads us to believe that the proposed ferritin-nanocage-based multivalent vaccine platform will provide strong protection against emerging SARS-CoV-2 variants of concern (VOCs).

COVID-19 , Viral Vaccines , Antibodies, Neutralizing/genetics , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Ferritins/genetics , Humans , Immunity , Mutation , SARS-CoV-2 , Vaccines, Combined
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1572495


The pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has upended healthcare systems and economies around the world. Rapid understanding of the structural biology and pathogenesis of SARS-CoV-2 has allowed the development of emergency use or FDA-approved vaccines and various candidate vaccines. Among the recently developed SARS-CoV-2 candidate vaccines, natural protein-based nanoparticles well suited for multivalent antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses are currently being investigated. This mini-review presents recent innovations in protein-based nanoparticle vaccines against SARS-CoV-2. The design and strategy of displaying antigenic domains, including spike protein, receptor-binding domain (RBD), and other domains on the surface of various protein-based nanoparticles and the performance of the developed nanoparticle-based vaccines are highlighted. In the final part of this review, we summarize and discuss recent advances in clinical trials and provide an outlook on protein-based nanoparticle vaccines.

COVID-19 Vaccines/immunology , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigen Presentation/immunology , COVID-19/immunology , COVID-19 Vaccines/pharmacology , Humans , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vaccines/immunology