Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Commun ; 13(1): 3645, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1908172

ABSTRACT

Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.


Subject(s)
COVID-19 , Superinfection , Genome, Viral/genetics , Humans , New York City/epidemiology , Recombination, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Diagn Microbiol Infect Dis ; 101(3): 115468, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1293712

ABSTRACT

Nasal and nasopharyngeal swab specimens tested by the Cepheid Xpert Xpress SARS-CoV-2 were analyzed by whole-genome sequencing based on impaired detection of the N2 target. Each viral genome had at least one mutation in the N gene, which likely arose independently in the New York City and Pittsburgh study sites.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , Cities/epidemiology , Databases, Genetic , Genome, Viral , Humans , Mutation , Phosphoproteins/genetics , United States/epidemiology
3.
J Med Virol ; 93(1): 559-563, 2021 01.
Article in English | MEDLINE | ID: covidwho-1196411

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created a precipitous increase in the need for molecular diagnostics. Unfortunately, access to RNA extraction reagents can represent a bottleneck for quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR)-based methodologies, stemming from both extraordinary supply-chain stresses and the global reach of the virus into resource-limited settings. To provide flexible diagnostic options for such environments, we report here an "unextracted modification" for qRT-PCR using the Centers for Disease Control's (CDC's) widely utilized primers/probe sets for severe acute respiratory syndrome coronavirus 2 (N1/N2/N3 targeting viral nucleocapsid and RP-control targeting human RNase P). This approach replaces RNA extraction/purification with a heat-inactivation step of viral transport media (VTM), followed by direct inoculation-with or without VTM spin concentration-into PCR master mixes. Using derivatives of care from our clinical workflow, we compared traditional and unextracted CDC methodologies. Although some decrease in analytic sensitivity was evident (by higher Ct values) without extraction, in particular for the N2 primer/probe-set, we observed high categorical positive agreement between extracted and unextracted results for N1 (unconcentrated VTM-38/40; concentrated VTM-39/41), N3 (unconcentrated VTM-38/40; concentrated VTM-41/41), and RP (unconcentrated and concentrated VTM-81/81). The negative categorical agreement for N1/N2/N3 was likewise high. Overall, these results suggest that laboratories could adapt and validate unextracted qRT-PCR protocols as a contingency to overcome supply limitations, with minimal impact on categorical results.


Subject(s)
COVID-19 Testing/economics , COVID-19 Testing/methods , COVID-19/economics , COVID-19/epidemiology , Developing Countries/economics , SARS-CoV-2 , Humans
4.
J Clin Microbiol ; 59(3)2021 02 18.
Article in English | MEDLINE | ID: covidwho-1125960

ABSTRACT

With the approach of respiratory virus season in the Northern Hemisphere, clinical microbiology and public health laboratories will need rapid diagnostic assays to distinguish severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from influenza virus and respiratory syncytial virus (RSV) infections for diagnosis and surveillance. In this study, the clinical performance of the Xpert Xpress SARS-CoV-2/Flu/RSV test (Cepheid, Sunnyvale, CA, USA) for nasopharyngeal swab specimens was evaluated in four centers: Johns Hopkins Medical Microbiology Laboratory, Northwell Health Laboratories, NYC Public Health Laboratory, and Los Angeles County/University of Southern California (LAC+USC) Medical Center. A total of 319 nasopharyngeal swab specimens, positive for SARS-CoV-2 (n = 75), influenza A virus (n = 65), influenza B virus (n = 50), or RSV (n = 38) or negative (n = 91) by the standard-of-care nucleic acid amplification tests at each site, were tested using the Cepheid panel test. The overall positive percent agreement for the SARS-CoV-2 target was 98.7% (n = 74/75), and the negative agreement was 100% (n = 91), with all other analytes showing 100% total agreement (n = 153). Standard-of-care tests to which the Cepheid panel was compared included the Cepheid Xpert Xpress SARS-CoV-2, Cepheid Xpert Xpress Flu/RSV, GenMark ePlex respiratory panel, BioFire respiratory panel 2.1 and v1.7, DiaSorin Simplexa COVID-19 Direct, and Hologic Panther Fusion SARS-CoV-2 assays. The Xpert Xpress SARS-CoV-2/Flu/RSV test showed high sensitivity and accuracy for all analytes included in the test. This test will provide a valuable clinical diagnostic and public health solution for detecting and differentiating SARS-CoV-2, influenza A and B virus, and RSV infections during the current respiratory virus season.


Subject(s)
COVID-19/diagnosis , Influenza, Human/diagnosis , Molecular Diagnostic Techniques/methods , Humans , Nasopharynx , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL