Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
J Crit Care ; 67: 126-131, 2022 02.
Article in English | MEDLINE | ID: covidwho-1509976


BACKGROUND: We compared filter survival and citrate-induced complications during continuous renal replacement therapy (CRRT) with regional citrate anticoagulation (RCA) in COVID-19 and Non-COVID-19 patients. METHODS: In this retrospective study we included all consecutive adult patients (n = 97) treated with RCA-CRRT. Efficacy and complications of RCA-CRRT were compared between COVID-19 and Non-COVID-19 patients. RESULTS: Mean filter run-time was significantly higher in COVID-19 patients compared to Non-COVID-19 patients (68.4 (95%CI 67.0-69.9) vs. 65.2 (95%CI 63.2-67.2) hours, respectively; log-rank 0.014). COVID-19 patients showed significantly higher activated partial thromboplastin time (aPTT) throughout the CRRT due to intensified systemic anticoagulation compared to Non-COVID-19 patients (54 (IQR 45-61) vs. 47 (IQR 41-58) seconds, respectively; p < 0.001). A significantly higher incidence of metabolic alkalosis, hypercalcemia and hypernatremia, consistent with reduced filter patency and citrate overload, was observed in COVID-19 patients compared to Non-COVID-19 patients (19.1% vs. 12.7%, respectively; p = 0.04). These metabolic disarrangements were resistant to per-protocol adjustments and disappeared after replacement of the CRRT-filter. CONCLUSIONS: RCA-CRRT in COVID-19 patients with intensified systemic anticoagulation provides an adequate filter lifespan. However, close monitoring of the acid-base balance appears warranted, as these patients tend to develop reduced filter patency leading to a higher incidence of citrate overload and metabolic disturbances. TRIAL REGISTRATION (LOCAL AUTHORITY): EA1/285/20 (Ethikkommission der Charité - Universitätsmedizin Berlin); date of registration 08.10.2020.

COVID-19 , Continuous Renal Replacement Therapy , Anticoagulants/adverse effects , Citrates , Citric Acid/adverse effects , Critical Illness , Humans , Retrospective Studies , SARS-CoV-2
Sci Rep ; 11(1): 10678, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1238016


With an urgent need for bedside imaging of coronavirus disease 2019 (COVID-19), this study's main goal was to assess inter- and intraobserver agreement in lung ultrasound (LUS) of COVID-19 patients. In this single-center study we prospectively acquired and evaluated 100 recorded ten-second cine-loops in confirmed COVID-19 intensive care unit (ICU) patients. All loops were rated by ten observers with different subspeciality backgrounds for four times by each observer (400 loops overall) in a random sequence using a web-based rating tool. We analyzed inter- and intraobserver variability for specific pathologies and a semiquantitative LUS score. Interobserver agreement for both, identification of specific pathologies and assignment of LUS scores was fair to moderate (e.g., LUS score 1 Fleiss' κ = 0.27; subpleural consolidations Fleiss' κ = 0.59). Intraobserver agreement was mostly moderate to substantial with generally higher agreement for more distinct findings (e.g., lowest LUS score 0 vs. highest LUS score 3 (median Fleiss' κ = 0.71 vs. 0.79) or air bronchograms (median Fleiss' κ = 0.72)). Intraobserver consistency was relatively low for intermediate LUS scores (e.g. LUS Score 1 median Fleiss' κ = 0.52). We therefore conclude that more distinct LUS findings (e.g., air bronchograms, subpleural consolidations) may be more suitable for disease monitoring, especially with more than one investigator and that training material used for LUS in point-of-care ultrasound (POCUS) should pay refined attention to areas such as B-line quantification and differentiation of intermediate LUS scores.

COVID-19/diagnostic imaging , Lung/diagnostic imaging , Point-of-Care Systems , SARS-CoV-2 , COVID-19/therapy , Female , Humans , Male , Middle Aged , Monitoring, Physiologic , Observer Variation , Prospective Studies , Ultrasonography