Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325542

ABSTRACT

Lots of works aim to reveal the driving factors of COVID-19 pandemic trajectory yet ignore the confidence of utilized trajectory data, making consequent results suspicious. Hereby, we proposed a pandemic metric with confidence (PMC) model in the hypothesis of Bernoulli Distribution of nine trajectories reported from 113 countries. Results exhibit the average confidence of trajectories across the global not in excess of 12.1% with the error threshold configuration of 1E-5. In contrast, the 95% high confidence setting also failed to predict the trajectory containing the acceptable error not beyond 1E-3. Thus, a proposed trade-off strategy between two contradictory expections (>50% confidence, <1E-3 error) supports 61% of investigated countries to predict the varying trajectory with confidence beyond 50%. Moreover, PMC model recommend the remanent 39% countries to extend the proportion of populaces in COVID-19 detecting-pool to a suggested-value (>1% of populations), ensuing the average confidence up to 70%.

2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325265

ABSTRACT

Background: The optimal vaccination is an essential public health strategy to control the pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aims to simulate the optimal vaccination strategy to control the virus epidemic by developing an age-specific model based on the transmission of coronavirus disease 2019 (COVID-19) in Wuhan City, China.Methods: An age-specific mathematical model based on the data of COVID-19 cases in Wuhan City from December 2, 2019 to March 16, 2020 was developed, with two scenarios for controlling transmission and reducing severity to estimate the effectiveness of SARS-CoV-2 vaccination strategy.Findings: Before the lockdown of the Wuhan City, the highest transmissibility of SARS-CoV-2 was among 14-44 years old (effective reproduction number, Reff = 4·28), followed by 14-44 to 45-64 years old (Reff = 2·61), and 14-44 to ≥ 65 years old (Reff = 1·69). We found that the first priority for controlling transmission should be to vaccinate nearly 90% individuals of 14-44 years old, followed by 90% individuals of 45-64 years old. However, the optimal vaccination strategy for reducing severity defined individuals ≥ 65 years old in vaccination priority groups, followed by 14-44 years old groups.Interpretation: The scenario analyses suggested that the optimal vaccination strategy aimed at controlling the transmission of COVID-19 might be to vaccinate about 90% of 15-44 years old individuals;while for reducing severity, the vaccination priority should focus on the older population. Furthermore, we also presented evidence about the heterogeneity of age-specific transmission and vaccination in different areas.Funding Statement: Bill & Melinda Gates Foundation, and the Science and Technology Program of Fujian Province.Declaration of Interests: The authors declare no competing interests.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325089

ABSTRACT

Backgrounds: : The potential therapeutic effects of protease inhibitors (PIs), such as lopinavir/ritonavir and darunavir, on COVID-19 are being tested in clinical trials. Although acute pancreatitis (AP) has been reported in patients treated with PIs, there have been few real-world studies comparing the occurrence and characteristics of AP after different PI regimens. Methods: Disproportionality analysis and Bayesian analysis were utilized for data mining of the Food and Drug Administration's Adverse Event Reporting System (FAERS) database for suspected adverse events involving AP after PI from January 2004 to December 2019. The times to onset and fatality rates of AP following different PI regimens were also compared. Results: Based on 33,832 reports related to PIs, 285 cases (0.84% of total adverse drug reactions, ADRs) were associated with AP;in these reports, the number of AP cases reported for the top five PIs was as follows: ritonavir/dasabuvir/ombitasvir/paritaprevir, 64 (22.46%);ritonavir, 54 (18.95%);atazanavir, 52 (18.25%);lopinavir/ritonavir, 48 (16.84%);and darunavir, 26 (9.12%). Twelve out of the 15 studied PIs, including lopinavir/ritonavir, darunavir and nelfinavir, which are potential therapeutics for COVID-19, were associated with AP. Of all the reported adverse events involving AP related to PIs, 64.56% occurred in men, which was a much higher proportion than what was observed in women (28.42%). The median time to onset of AP was 103 (IQR: 26-408) days after the initiation of PI treatment. Patients treated with ritonavir/dasabuvir/ombitasvir/paritaprevir appeared to have an earlier onset of AP than those receiving atazanavir (31 [IQR: 17–68.25] days vs 187.5 [IQR: 80.5–556.5] days, p=0.0379) or ritonavir (31 [IQR: 17–68.25] days vs 177 [IQR: 56–539] days, p=0.0371). Compared with AP cases induced by all studied PIs, which had a fatality rate of 14.02%, AP cases associated with ritonavir (18.87%) and lopinavir/ritonavir (22.73%) appeared to be associated with a higher risk of death. Conclusions: Analysis of the FAERS data provides a more precise understanding of the occurrence and characteristics of AP after different PI regimens. Signals for AP associated with various PI regimens have been detected. The findings support continued surveillance, risk factor identification, and comparative studies.

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-314877

ABSTRACT

Background: A novel coronavirus (SARS-CoV-2) has spread widely and led to high disease burden around the world. This study aimed to explore key parameters of SARS-CoV-2 infection and to assess the effectiveness of interventions to control the coronavirus disease 2019 (COVID-19). Methods: A susceptible – exposed – infectious – asymptomatic – recovered (SEIAR) model was developed for the assessment. Data of symptomatic and asymptomatic infection of SARS-CoV-2 were collected to calculate the key parameters of the model in Ningbo City, China. Results: A total of 157 confirmed COVID-19 cases (including 51 imported cases and 106 secondary cases) and 30 asymptomatic infections were reported in Ningbo City. The proportion of asymptomatic has an increasing trend. The proportion of asymptomatic of elder people was lower than younger people, and the difference was statistical significant (Fisher’s Exact Test, P = 0.034). There were 22 clusters associated with 167 SARS-CoV-2 infections, among which 29 cases were asymptomatic, with a proportion of 17.37%. We found that the secondary attack rate of asymptomatic was almost the same as that of symptomatic cases, and no significance was observed (χ2 = 1.350, P = 0.245) by Kruskal-Wallis test. The effective reproduction number (Reff) was 1.43 which revealed that the transmissibility of SARS-CoV-2 was moderate. If the interventions were not strengthened, the duration of the outbreak would last about 16 months with a simulated attack rate of 44.15%. The total attack rate and duration of the outbreak would increase along with the increasing delay of intervention. Conclusions: SARS-CoV-2 had moderate transmissibility in Ningbo City, China. Asymptomatic infection has the same transmissibility as symptomatic. The integrated interventions were implemented at different stages during the outbreak, which found to be exceedingly effective in China.

5.
Infect Dis Poverty ; 10(1): 140, 2021 Dec 28.
Article in English | MEDLINE | ID: covidwho-1639437

ABSTRACT

BACKGROUND: Reaching optimal vaccination rates is an essential public health strategy to control the coronavirus disease 2019 (COVID-19) pandemic. This study aimed to simulate the optimal vaccination strategy to control the disease by developing an age-specific model based on the current transmission patterns of COVID-19 in Wuhan City, China. METHODS: We collected two indicators of COVID-19, including illness onset data and age of confirmed case in Wuhan City, from December 2, 2019, to March 16, 2020. The reported cases were divided into four age groups: group 1, ≤ 14 years old; group 2, 15 to 44 years old; group 3, 44 to 64 years old; and group 4, ≥ 65 years old. An age-specific susceptible-exposed-symptomatic-asymptomatic-recovered/removed model was developed to estimate the transmissibility and simulate the optimal vaccination strategy. The effective reproduction number (Reff) was used to estimate the transmission interaction in different age groups. RESULTS: A total of 47 722 new cases were reported in Wuhan City from December 2, 2019, to March 16, 2020. Before the travel ban of Wuhan City, the highest transmissibility was observed among age group 2 (Reff = 4.28), followed by group 2 to 3 (Reff = 2.61), and group 2 to 4 (Reff = 1.69). China should vaccinate at least 85% of the total population to interrupt transmission. The priority for controlling transmission should be to vaccinate 5% to 8% of individuals in age group 2 per day (ultimately vaccinated 90% of age group 2), followed by 10% of age group 3 per day (ultimately vaccinated 90% age group 3). However, the optimal vaccination strategy for reducing the disease severity identified individuals ≥ 65 years old as a priority group, followed by those 45-64 years old. CONCLUSIONS: Approximately 85% of the total population (nearly 1.2 billion people) should be vaccinated to build an immune barrier in China to safely consider removing border restrictions. Based on these results, we concluded that 90% of adults aged 15-64 years should first be vaccinated to prevent transmission in China.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , China , Cities , Humans , Middle Aged , SARS-CoV-2 , Vaccination , Young Adult
6.
Preprint in English | medRxiv | ID: ppmedrxiv-21263766

ABSTRACT

BackgroundThe worldwide surge in coronavirus cases has led to the COVID-19 testing demand surge. Rapid, accurate, and cost-effective COVID-19 screening tests working at a population level are in imperative demand globally. MethodsBased on the eye symptoms of COVID-19, we developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras. The convolutional neural networks (CNNs)-based model was trained on these eye images to complete binary classification task of identifying the COVID-19 cases. The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1. The application programming interface was open access. FindingsThe multicenter study included 2436 pictures corresponding to 657 subjects (155 COVID-19 infection, 23{middle dot}6%) in development dataset (train and validation) and 2138 pictures corresponding to 478 subjects (64 COVID-19 infections, 13{middle dot}4%) in test dataset. The image-level performance of COVID-19 prescreening model in the China-Spain multicenter study achieved an AUC of 0{middle dot}913 (95% CI, 0{middle dot}898-0{middle dot}927), with a sensitivity of 0{middle dot}695 (95% CI, 0{middle dot}643-0{middle dot}748), a specificity of 0{middle dot}904 (95% CI, 0{middle dot}891 -0{middle dot}919), an accuracy of 0{middle dot}875(0{middle dot}861-0{middle dot}889), and a F1 of 0{middle dot}611(0{middle dot}568-0{middle dot}655). InterpretationThe CNN-based model for COVID-19 rapid prescreening has reliable specificity and sensitivity. This system provides a low-cost, fully self-performed, non-invasive, real-time feedback solution for continuous surveillance and large-scale rapid prescreening for COVID-19. FundingThis project is supported by Aimomics (Shanghai) Intelligent

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21258626

ABSTRACT

The Coronavirus disease 2019 (COVID-19) has affected several million people since 2019. Despite various vaccines of COVID-19 protect million people in many countries, the worldwide situations of more the asymptomatic and mutated strain discovered are urging the more sensitive COVID-19 testing in this turnaround time. Unfortunately, it is still nontrivial to develop a new fast COVID-19 screening method with the easier access and lower cost, due to the technical and cost limitations of the current testing methods in the medical resource-poor districts. On the other hand, there are more and more ocular manifestations that have been reported in the COVID-19 patients as growing clinical evidence[1]. This inspired this project. We have conducted the joint clinical research since January 2021 at the ShiJiaZhuang City, Hebei province, China, which approved by the ethics committee of The fifth hospital of ShiJiaZhuang of Hebei Medical University. We undertake several blind tests of COVID-19 patients by Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Meantime as an important part of the ongoing globally COVID-19 eye test program by AIMOMICS since February 2020, we propose a new fast screening method of analyzing the eye-region images, captured by common CCD and CMOS cameras. This could reliably make a rapid risk screening of COVID-19 with the sustainable stable high performance in different countries and races. For this clinical trial in ShiJiaZhuang, we compare and analyze 1194 eye-region images of 115 patients, including 66 COVID-19 positive patients, 44 rehabilitation patients (nucleic acid changed from positive to negative), 5 liver patients, as well as 117 healthy people. Remarkably, we consistently achieved very high testing results (> 0.94) in terms of both sensitivity and specificity in our blind test of COVID-19 patients. This confirms the viability of the COVID-19 fast screening by the eye-region manifestations. Particularly and impressively, the results have the similar conclusion as the other clinical trials of the globally COVID-19 eye test program[1]. Hopefully, this series of ongoing globally COVID-19 eye test study, and potential rapid solution of fully self-performed COVID risk screening method, can be inspiring and helpful to more researchers in the world soon. Our model for COVID-19 rapid prescreening have the merits of the lower cost, fully self-performed, non-invasive, importantly real-time, and thus enables the continuous health surveillance. We further implement it as the open accessible APIs, and provide public service to the world. Our pilot experiments show that our model is ready to be usable to all kinds of surveillance scenarios, such as infrared temperature measurement device at airports and stations, or directly pushing to the target people groups smartphones as a packaged application.

8.
Sci Rep ; 11(1): 9545, 2021 05 05.
Article in English | MEDLINE | ID: covidwho-1217710

ABSTRACT

A novel coronavirus (SARS-CoV-2) has spread worldwide and led to high disease burden around the world. This study aimed to explore the key parameters of SARS-CoV-2 infection and to assess the effectiveness of interventions to control the coronavirus disease 2019 (COVID-19). A susceptible-exposed-infectious-asymptomatic-recovered (SEIAR) model was developed for the assessment. The information of each confirmed case and asymptomatic infection was collected from Ningbo Center for Disease Control and Prevention (CDC) to calculate the key parameters of the model in Ningbo City, China. A total of 157 confirmed COVID-19 cases (including 51 imported cases and 106 secondary cases) and 30 asymptomatic infections were reported in Ningbo City. The proportion of asymptomatic infections had an increasing trend. The proportion of elder people in the asymptomatic infections was lower than younger people, and the difference was statistically significant (Fisher's Exact Test, P = 0.034). There were 22 clusters associated with 167 SARS-CoV-2 infections, among which 29 cases were asymptomatic infections, accounting for 17.37%. We found that the secondary attack rate (SAR) of asymptomatic infections was almost the same as that of symptomatic cases, and no statistical significance was observed (χ2 = 0.052, P = 0.819) by Kruskal-Wallis test. The effective reproduction number (Reff) was 1.43, which revealed that the transmissibility of SARS-CoV-2 was moderate. If the interventions had not been strengthened, the duration of the outbreak would have lasted about 16 months with a simulated attack rate of 44.15%. The total attack rate (TAR) and duration of the outbreak would increase along with the increasing delay of intervention. SARS-CoV-2 had moderate transmissibility in Ningbo City, China. The proportion of asymptomatic infections had an increase trend. Asymptomatic infections had the same transmissibility as symptomatic infections. The integrated interventions were implemented at different stages during the outbreak, which turned out to be exceedingly effective in China.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Infection Control/methods , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Infections/epidemiology , Basic Reproduction Number , Child , Child, Preschool , China/epidemiology , Cities , Female , Humans , Incidence , Infant , Male , Middle Aged , Models, Theoretical , Young Adult
10.
Open Forum Infect Dis ; 7(10): ofaa430, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-756946

ABSTRACT

Here we report a case study of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak event during bus trips of an index patient in Hunan Province, China. This retrospective investigation suggests potential airborne transmission of SARS-CoV-2 and the possibility of superspreading events in certain close contact and closed space settings, which should be taken into account when control strategies are planned.

11.
Infect Dis Poverty ; 9(1): 117, 2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-730583

ABSTRACT

BACKGROUND: The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also called 2019-nCoV) causes different morbidity risks to individuals in different age groups. This study attempts to quantify the age-specific transmissibility using a mathematical model. METHODS: An epidemiological model with five compartments (susceptible-exposed-symptomatic-asymptomatic-recovered/removed [SEIAR]) was developed based on observed transmission features. Coronavirus disease 2019 (COVID-19) cases were divided into four age groups: group 1, those ≤ 14 years old; group 2, those 15 to 44 years old; group 3, those 45 to 64 years old; and group 4, those ≥ 65 years old. The model was initially based on cases (including imported cases and secondary cases) collected in Hunan Province from January 5 to February 19, 2020. Another dataset, from Jilin Province, was used to test the model. RESULTS: The age-specific SEIAR model fitted the data well in each age group (P < 0.001). In Hunan Province, the highest transmissibility was from age group 4 to 3 (median: ß43 = 7.71 × 10- 9; SAR43 = 3.86 × 10- 8), followed by group 3 to 4 (median: ß34 = 3.07 × 10- 9; SAR34 = 1.53 × 10- 8), group 2 to 2 (median: ß22 = 1.24 × 10- 9; SAR22 = 6.21 × 10- 9), and group 3 to 1 (median: ß31 = 4.10 × 10- 10; SAR31 = 2.08 × 10- 9). The lowest transmissibility was from age group 3 to 3 (median: ß33 = 1.64 × 10- 19; SAR33 = 8.19 × 10- 19), followed by group 4 to 4 (median: ß44 = 3.66 × 10- 17; SAR44 = 1.83 × 10- 16), group 3 to 2 (median: ß32 = 1.21 × 10- 16; SAR32 = 6.06 × 10- 16), and group 1 to 4 (median: ß14 = 7.20 × 10- 14; SAR14 = 3.60 × 10- 13). In Jilin Province, the highest transmissibility occurred from age group 4 to 4 (median: ß43 = 4.27 × 10- 8; SAR43 = 2.13 × 10- 7), followed by group 3 to 4 (median: ß34 = 1.81 × 10- 8; SAR34 = 9.03 × 10- 8). CONCLUSIONS: SARS-CoV-2 exhibits high transmissibility between middle-aged (45 to 64 years old) and elderly (≥ 65 years old) people. Children (≤ 14 years old) have very low susceptibility to COVID-19. This study will improve our understanding of the transmission feature of SARS-CoV-2 in different age groups and suggest the most prevention measures should be applied to middle-aged and elderly people.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Age Factors , Aged , Betacoronavirus/isolation & purification , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Young Adult
12.
Preprint in English | bioRxiv | ID: ppbiorxiv-267716

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) becomes a tremendous threat to global health. Although vaccines against the virus are under development, the antigen epitopes on the virus and their immunogenicity are poorly understood. Here, we simulated the three-dimensional structures of SARS-CoV-2 proteins with high performance computer, predicted the B cell epitopes on spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins of SARS-CoV-2 using structure-based approaches, and then validated the epitope immunogenicity by immunizing mice. Almost all 33 predicted epitopes effectively induced antibody production, six of which were immunodominant epitopes in patients identified via the binding of epitopes with the sera from domestic and imported COVID-19 patients, and 23 were conserved within SARS-CoV-2, SARS-CoV and bat coronavirus RaTG13. We also found that the immunodominant epitopes of domestic SARS-CoV-2 were different from that of the imported, which may be caused by the mutations on S (G614D) and N proteins. Importantly, we validated that eight epitopes on S protein elicited neutralizing antibodies that blocked the cell entry of both D614 and G614 pseudo-virus of SARS-CoV-2, three and nine epitopes induced D614 or G614 neutralizing antibodies, respectively. Our present study shed light on the immunodominance, neutralization, and conserved epitopes on SARS-CoV-2 which are potently used for the diagnosis, virus classification and the vaccine design tackling inefficiency, virus mutation and different species of coronaviruses.

13.
Preprint in English | medRxiv | ID: ppmedrxiv-20153106

ABSTRACT

ObjectivesThe prevalence of antibodies to SARS-CoV-2 among blood donors in China remains unknown. To reveal the missing information, we investigated the seroprevalence of SARS-CoV-2 antibodies among blood donors in the cities of Wuhan, Shenzhen, and Shijiazhuang of China. DesignCross-sectional study SettingThree blood centers, located in the central, south and north China, respectively, recruiting from January to April 2020. Participants38,144 healthy blood donors donated in Wuhan, Shenzhen and Shijiazhuang were enrolled, who were all met the criteria for blood donation during the COVID-19 pandemic in China. Main outcome measuresSpecific antibodies against SARS-CoV-2 including total antibody (TAb), IgG antibody against receptor-binding domain of spike protein (IgG-RBD) and nucleoprotein (IgG-N), and IgM. Pseudotype lentivirus-based neutralization test was performed on all TAb-positive samples. In addition, anonymous personal demographic information, including gender, age, ethnicity, occupation and educational level, and blood type were collected. ResultsA total of 519 samples from 410 donors were confirmed by neutralization tests. The SARS-CoV-2 seroprevalence among blood donors was 2.29% (407/17,794, 95%CI: 2.08% to 2.52%) in Wuhan, 0.029% (2/6,810, 95%CI: 0.0081% to 0.11%) in Shenzhen, and 0.0074% (1/13,540, 95%CI: 0.0013% to 0.042%) in Shijiazhuang, respectively. The earliest emergence of SARS-CoV-2 seropositivity in blood donors was identified on January 20, 2020 in Wuhan. The weekly prevalence of SARS-CoV-2 antibodies in Wuhans blood donors changed dynamically and were 0.08% (95%CI: 0.02% to 0.28%) during January 15 to 22 (before city lockdown), 3.08% (95%CI: 2.67% to 3.55%) during January 23 to April 7 (city quarantine period) and 2.33% (95%CI: 2.06% to 2.63%) during April 8 to 30 (after lockdown easing). Female and older-age were identified to be independent risk factors for SARS-CoV-2 seropositivity among donors in Wuhan. ConclusionsThe prevalence of antibodies to SARS-CoV-2 among blood donors in China was low, even in Wuhan city. According to our data, the earliest emergence of SARS-CoV-2 in Wuhans donors should not earlier than January, 2020. As most of the population of China remained uninfected during the early wave of COVID-19 pandemic, effective public health measures are still certainly required to block viral spread before a vaccine is widely available.

14.
Preprint in English | medRxiv | ID: ppmedrxiv-20111963

ABSTRACT

As Coronavirus disease 2019 (COVID-19) continues to spread, a detailed understanding on the transmission mechanisms is of paramount importance. The disease transmits mainly through respiratory droplets and aerosol. Although models for the evaporation and trajectory of respiratory droplets have been developed, how the environment impacts the transmission of COVID-19 is still unclear. In this study, we investigate the propagation of respiratory droplets and aerosol particles generated by speech under a wide range of temperature (0 {degrees}C to 40 {degrees}C) and relative humidity (0% to 92%) conditions. We show that droplets can travel three times farther in low temperature and high humidity environment, while the amount of aerosol increases in high temperature and low humidity environment. The results also underscore the importance of proper ventilation, as droplets and aerosol spread significantly farther in airstreams. This study contributes to the understanding of the environmental impact on COVID-19 transmission.

15.
Preprint in English | bioRxiv | ID: ppbiorxiv-045799

ABSTRACT

The outbreak of COVID-19 has caused serious epidemic events in China and other countries. With the rapid spread of COVID-19, it is urgent to explore the pathogenesis of this novel coronavirus. However, the foundational research of COVID-19 is very weak. Although angiotensin converting enzyme 2 (ACE2) is the reported receptor of SARS-CoV-2, information about SARS-CoV-2 invading airway epithelial cells is very limited. Based on the analysis of the Human Protein Atlas database, we compared the virus-related receptors of epithelial-derived cells from different organs and found potential key molecules in the local microenvironment for SARS-CoV-2 entering airway epithelial cells. In addition, we found that these proteins were associated with virus reactive proteins in host airway epithelial cells, which may promote the activation of the immune system and the release of inflammatory factors. Our findings provide a new research direction for understanding the potential microenvironment required by SARS-CoV-2 infection in airway epithelial, which may assist in the discovery of potential drug targets against SARS-CoV-2 infection.

16.
Preprint in English | medRxiv | ID: ppmedrxiv-20023671

ABSTRACT

BackgroundThe dynamic changes of lymphocyte subsets and cytokines profiles of patients with novel coronavirus disease (COVID-19) and their correlation with the disease severity remain unclear. MethodsPeripheral blood samples were longitudinally collected from 40 confirmed COVID-19 patients and examined for lymphocyte subsets by flow cytometry and cytokine profiles by specific immunoassays. ResultsOf the 40 COVID-19 patients enrolled, 13 severe cases showed significant and sustained decreases in lymphocyte counts but increases in neutrophil counts than 27 mild cases. Further analysis demonstrated significant decreases in the counts of T cells, especially CD8 + T cells, as well as increases in IL-6, IL-10, IL-2 and IFN-{gamma} levels in the peripheral blood in the severe cases compared to those in the mild cases. T cell counts and cytokine levels in severe COVID-19 patients who survived the disease gradually recovered at later time points to levels that were comparable to those of the mild cases. Moreover, the neutrophil-to-CD8+ T cell ratio (N8R) were identified as the most powerful prognostic factor affecting the prognosis for severe COVID-19. ConclusionsThe degree of lymphopenia and a proinflammatory cytokine storm is higher in severe COVID-19 patients than in mild cases, and is associated with the disease severity. N8R may serve as a useful prognostic factor for early identification of severe COVID-19 cases. SummaryLymphocyte subsets and cytokine profiles in the peripheral blood of COVID-19 patients were longitudinally characterized. The study revealed the kinetics features of immune parameters associated with the disease severity and identified N8R as a useful prognostic factor for predicting severe COVID-19 cases.

SELECTION OF CITATIONS
SEARCH DETAIL