Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Biosaf Health ; 4(3): 186-192, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1821155

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, generating new variants that pose a threat to global health; therefore, it is imperative to obtain safe and broad-spectrum antivirals against SARS-CoV-2 and its variants. To this end, we screened compounds for their ability to inhibit viral entry, which is a critical step in virus infection. Twenty compounds that have been previously reported to inhibit SARS-CoV-2 replication were tested by using pseudoviruses containing the spike protein from the original strain (SARS-CoV-2-WH01). The cytotoxicity of these compounds was determined. Furthermore, we identified six compounds with strong antagonistic activity against the WH01 pseudovirus, and low cytotoxicity was identified. These compounds were then evaluated for their efficacy against pseudoviruses expressing the spike protein from B.1.617.2 (Delta) and B.1.1.529 (Omicron), the two most prevalent circulating strains. These assays demonstrated that two phenothiazine compounds, trifluoperazine 2HCl and thioridazine HCl, inhibit the infection of Delta and Omicron pseudoviruses. Finally, we discovered that these two compounds were highly effective against authentic SARS-CoV-2 viruses, including the WH01, Delta, and Omicron strains. Our study identified potential broad-spectrum SARS-CoV-2 inhibitors and provided insights into the development of novel therapeutics.

2.
Sci Signal ; 15(715): eabh0068, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1741564

ABSTRACT

The transcription regulator ID2 plays an essential role in the development and differentiation of immune cells. Here, we report that ID2 also negatively regulates antiviral innate immune responses. During viral infection of human epithelial cells, ID2 bound to TANK-binding kinase 1 (TBK1) and to inhibitor of nuclear factor κB kinase ε (IKKε). These interactions inhibited the recruitment and activation of interferon (IFN) regulatory factor 3 (IRF3) by TBK1 or IKKε, leading to a reduction in the expression of IFN-ß1 (IFNB1). IFN-ß induced the nuclear export of ID2 to form a negative feedback loop. Knocking out ID2 in human cells enhanced innate immune responses and suppressed infection by different viruses, including SARS-CoV-2. Mice with a myeloid-specific deficiency of ID2 produced more IFN-α in response to viral infection and were more resistant to viral infection than wild-type mice. Our findings not only establish ID2 as a modulator of IRF3 activation induced by TBK1 and/or IKKε but also introduce a mechanism for cross-talk between innate immunity and cell development and differentiation.


Subject(s)
COVID-19 , I-kappa B Kinase , Animals , Antiviral Agents , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Immunity, Innate , Inhibitor of Differentiation Protein 2 , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Mice , Phosphorylation , SARS-CoV-2
3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-318459

ABSTRACT

Since beginning of this century, there have already been three zoonotic outbreaks caused by beta coronaviruses (CoV), SARS-CoV in 2002-2003, MERS-CoV in 2012, and the newly identified 2019-nCoV in late 2019, Wuhan, China. As to Feb 10 th , 2020, there are over 40,000 confirmed cases and over 900 deaths. However, little is known about the biology of this newly emerged virus. Here we developed a lentiviral based pseudovirus system for S protein of 2019-nCoV to study virus entry in BSL2 settings. First, we confirmed that human angiotensin converting enzyme 2 (hACE2) is the main entry receptor for 2019-nCoV. Second, we found that 2019-nCoV S protein mediated entry on 293/hACE2 cells was mainly through endocytosis, and PIKfyve, TPC2, and cathepsin L are critical for virus entry. Third, 2019-nCoV S protein is less stable than SARS-CoV, and it could trigger protease-independent and receptor dependent cell-cell fusion, which might help virus rapidly spread from cell to cell. Finally and more importantly, polyclonal anti-SARS S1 antibodies T62 effectively inhibited entry of SARS-CoV S pseudovirions, but almost had no effect on entry of 2019-nCoV S pseudovirions. Further studies using sera from one recovered SARS-CoV patient and five 2019-nCoV patients showed that there was only limited cross-neutralization activities between SARS-CoV and 2019-nCoV sera, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for 2019-nCoV.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-325398

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. How the host immune system senses and responds to SARS-CoV-2 infection remain to be determined. Here, we report that SARS-CoV-2 infection activates the innate immune response through the cytosolic DNA sensing cGAS-STING pathway. SARS-CoV-2 infection induces the cellular level of 2'3'-cGAMP associated with STING activation. cGAS recognizes chromatin DNA shuttled from the nucleus as a result of cell-to-cell fusion upon SARS-CoV-2 infection. We further demonstrate that the expression of spike protein from SARS-CoV-2 and ACE2 from host cells is sufficient to trigger cytoplasmic chromatin upon cell fusion. Furthermore, cytoplasmic chromatin-cGAS-STING pathway, but not MAVS mediated viral RNA sensing pathway, contributes to interferon and pro-inflammatory gene expression upon cell fusion. Finally, we show that cGAS is required for host antiviral responses against SARS-CoV-2, and a STING-activating compound potently inhibits viral replication. Together, our study reported a previously unappreciated mechanism by which the host innate immune system responds to SARS-CoV-2 infection, mediated by cytoplasmic chromatin from the infected cells. Targeting the cytoplasmic chromatin-cGAS-STING pathway may offer novel therapeutic opportunities in treating COVID-19. In addition, these findings extend our knowledge in host defense against viral infection by showing that host cells’ self-nucleic acids can be employed as a “danger signal” to alarm the immune system.

5.
Front Immunol ; 12: 791348, 2021.
Article in English | MEDLINE | ID: covidwho-1608514

ABSTRACT

Background: Striking similarities have been found between coronavirus disease 2019 (COVID-19) and anti-melanoma differentiation-associated gene 5 (MDA5) antibody (Ab)-related dermatomyositis, implying a shared autoinflammatory aberrance. Herein, we aim to investigate whether the anti-MDA5 Ab is present in COVID-19 and correlates with the severity and adverse outcome of COVID-19 patients. Methods and Findings: We retrospectively recruited 274 adult inpatients with COVID-19 in this study, including 48, 164, and 62 cases of deaths, severe, and non-severe patients respectively. The anti-MDA5 Ab was determined by ELISA and verified by Western Blotting, which indicated that the positive rate of anti-MDA5 Ab in COVID-19 patients was 48.2% (132/274). The clinical and laboratory features, as well as outcomes between patients with positive and negative anti-MDA5 Ab were compared and we found that the anti-MDA5 Ab positive patients tended to represent severe disease (88.6% vs 66.9%, P<0.0001). We also demonstrated that the titer of anti-MDA5 Ab was significantly elevated in the non-survivals (5.95 ± 5.16 vs 8.22 ± 6.64, P=0.030) and the positive rate was also higher than that in the survivals (23.5% vs 12.0%, P=0.012). Regarding severe COVID-19 patients, we found that high titer of anti-MDA5 Ab (≥10.0 U/mL) was more prevalent in the non-survivals (31.2% vs 14.0%, P=0.006). Moreover, a dynamic analysis of anti-MDA5 Ab was conducted at different time-points of COVID-19, which revealed that early profiling of anti-MDA5 Ab could distinguish severe patients from those with non-severe ones. Conclusions: Anti-MDA5 Ab was prevalent in the COVID-19 patients and high titer of this antibody is correlated with severe disease and unfavorable outcomes.


Subject(s)
Antibodies/immunology , COVID-19/immunology , Interferon-Induced Helicase, IFIH1/immunology , Severity of Illness Index , Adult , Aged , Antibodies/blood , COVID-19/epidemiology , COVID-19/virology , Disease Progression , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Middle Aged , Pandemics , Prognosis , Retrospective Studies , SARS-CoV-2/physiology
6.
Signal Transduct Target Ther ; 6(1): 382, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1500449

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. How the host immune system senses and responds to SARS-CoV-2 infection remain largely unresolved. Here, we report that SARS-CoV-2 infection activates the innate immune response through the cytosolic DNA sensing cGAS-STING pathway. SARS-CoV-2 infection induces the cellular level of 2'3'-cGAMP associated with STING activation. cGAS recognizes chromatin DNA shuttled from the nucleus as a result of cell-to-cell fusion upon SARS-CoV-2 infection. We further demonstrate that the expression of spike protein from SARS-CoV-2 and ACE2 from host cells is sufficient to trigger cytoplasmic chromatin upon cell fusion. Furthermore, cytoplasmic chromatin-cGAS-STING pathway, but not MAVS-mediated viral RNA sensing pathway, contributes to interferon and pro-inflammatory gene expression upon cell fusion. Finally, we show that cGAS is required for host antiviral responses against SARS-CoV-2, and a STING-activating compound potently inhibits viral replication. Together, our study reported a previously unappreciated mechanism by which the host innate immune system responds to SARS-CoV-2 infection, mediated by cytoplasmic chromatin from the infected cells. Targeting the cytoplasmic chromatin-cGAS-STING pathway may offer novel therapeutic opportunities in treating COVID-19. In addition, these findings extend our knowledge in host defense against viral infection by showing that host cells' self-nucleic acids can be employed as a "danger signal" to alarm the immune system.


Subject(s)
COVID-19/immunology , Chromatin/immunology , Cytoplasm/immunology , Immunity, Innate , Nucleotidyltransferases/immunology , SARS-CoV-2/immunology , Animals , COVID-19/genetics , Chromatin/genetics , Cytoplasm/genetics , Disease Models, Animal , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Transgenic , Nucleotidyltransferases/genetics , SARS-CoV-2/genetics
7.
Cell Chem Biol ; 29(1): 5-18.e6, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1471910

ABSTRACT

The global epidemic caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in the infection of over 200 million people. To extend the knowledge of interactions between SARS-CoV-2 and humans, we systematically investigate the interactome of 29 viral proteins in human cells by using an antibody-based TurboID assay. In total, 1,388 high-confidence human proximal proteins with biotinylated sites are identified. Notably, we find that SARS-CoV-2 manipulates the antiviral and immune responses. We validate that the membrane protein ITGB1 associates angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 entry. Moreover, we reveal that SARS-CoV-2 proteins inhibit activation of the interferon pathway through the mitochondrial protein mitochondrial antiviral-signaling protein (MAVS) and the methyltransferase SET domain containing 2, histone lysine methyltransferase (SETD2). We propose 111 potential drugs for the clinical treatment of coronavirus disease 2019 (COVID-19) and identify three compounds that significantly inhibit the replication of SARS-CoV-2. The proximity labeling map of SARS-CoV-2 and humans provides a resource for elucidating the mechanisms of viral infection and developing drugs for COVID-19 treatment.


Subject(s)
Antibodies/immunology , Antiviral Agents/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/immunology , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/immunology , Humans , Integrin beta1/immunology , Microbial Sensitivity Tests
8.
Sci Adv ; 7(38): eabb5933, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1440796

ABSTRACT

Growing evidence indicates the vital role of lipid metabolites in innate immunity. The lipid lysophosphatidic acid (LPA) concentrations are enhanced in patients upon HCV or SARS-CoV-2 infection, but the function of LPA and its receptors in innate immunity is largely unknown. Here, we found that viral infection promoted the G protein­coupled receptor LPA1 expression, and LPA restrained type I/III interferon production through LPA1. Mechanistically, LPA1 signaling activated ROCK1/2, which phosphorylated IRF3 Ser97 to suppress IRF3 activation. Targeting LPA1 or ROCK in macrophages, fibroblasts, epithelial cells, and LPA1 conditional KO mice promoted interferon-induced clearance of multiple viruses. LPA1 was colocalized with the receptor ACE2 in lung and intestine. Together with previous findings that LPA1 and ROCK1/2 promoted vascular leaking or lung fibrosis, we propose that the current available preclinical drugs targeting the LPA1-ROCK module might protect from SARS-CoV-2 or various virus infections in the intestine or lung.

10.
Emerg Microbes Infect ; 10(1): 1227-1240, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1246665

ABSTRACT

The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has severely impacted the global public health and socio-economic stability, calling for effective vaccines and therapeutics. In this study, we continued our efforts to develop more efficient SARS-CoV-2 fusion inhibitors and achieved significant findings. First, we found that the membrane-proximal external region (MPER) sequence of SARS-CoV-2 spike fusion protein plays a critical role in viral infectivity and can serve as an ideal template for design of fusion-inhibitory peptides. Second, a panel of novel lipopeptides was generated with greatly improved activity in inhibiting SARS-CoV-2 fusion and infection. Third, we showed that the new inhibitors maintained the potent inhibitory activity against emerging SARS-CoV-2 variants, including those with the major mutations of the B.1.1.7 and B.1.351 strains circulating in the United Kingdom and South Africa, respectively. Fourth, the new inhibitors also cross-inhibited other human CoVs, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Fifth, the structural properties of the new inhibitors were characterized by circular dichroism (CD) spectroscopy and crystallographic approach, which revealed the mechanisms underlying the high binding and inhibition. Combined, our studies provide important information for understanding the mechanism of SARS-CoV-2 fusion and a framework for the development of peptide therapeutics for the treatment of SARS-CoV-2 and other CoVs.


Subject(s)
Drug Design , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , SARS-CoV-2/drug effects , Virus Attachment/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Fusion , Cell Survival/drug effects , Chlorocebus aethiops , Communicable Diseases, Emerging/virology , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Protein Conformation , Vero Cells
11.
ACS Infect Dis ; 7(6): 1535-1544, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1243273

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of potential drugs is urgently needed to control the pandemic. RNA dependent RNA polymerase (RdRp) is a conserved protein within RNA viruses and plays a crucial role in the viral life cycle, thus making it an attractive target for development of antiviral drugs. In this study, 101 quinoline and quinazoline derivatives were screened against SARS-CoV-2 RdRp using a cell-based assay. Three compounds I-13e, I-13h, and I-13i exhibit remarkable potency in inhibiting RNA synthesis driven by SARS-CoV-2 RdRp and relatively low cytotoxicity. Among these three compounds, I-13e showed the strongest inhibition upon RNA synthesis driven by SARS-CoV-2 RdRp, the resistance to viral exoribonuclease activity and the inhibitory effect on the replication of CoV, thus holding potential of being drug candidate for treatment of SARS-CoV-2.


Subject(s)
Quinazolines , Quinolines , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Humans , Quinazolines/pharmacology , Quinolines/pharmacology , RNA, Viral/biosynthesis
12.
Virol Sin ; 36(5): 890-900, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1174013

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic worldwide. Vaccines and antiviral drugs are the most promising candidates for combating this global epidemic, and scientists all over the world have made great efforts to this end. However, manipulation of the SARS-CoV-2 should be performed in the biosafety level 3 laboratory. This makes experiments complicated and time-consuming. Therefore, a safer system for working with this virus is urgently needed. Here, we report the construction of plasmid-based, non-infectious SARS-CoV-2 replicons with turbo-green fluorescent protein and/or firefly luciferase reporters by reverse genetics using transformation-associated recombination cloning in Saccharomyces cerevisiae. Replication of these replicons was achieved simply by direct transfection of cells with the replicon plasmids as evident by the expression of reporter genes. Using SARS-CoV-2 replicons, the inhibitory effects of E64-D and remdesivir on SARS-CoV-2 replication were confirmed, and the half-maximal effective concentration (EC50) value of remdesivir and E64-D was estimated by different quantification methods respectively, indicating that these SARS-CoV-2 replicons are useful tools for antiviral drug evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Drug Evaluation , Humans , Replicon , Virus Replication
13.
Cell Mol Immunol ; 18(4): 945-953, 2021 04.
Article in English | MEDLINE | ID: covidwho-1104474

ABSTRACT

SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-ß promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.


Subject(s)
COVID-19/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , SARS-CoV-2/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Interferon Regulatory Factor-3/genetics , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Mutation , Phosphorylation , Promoter Regions, Genetic , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , SARS-CoV-2/enzymology , Sendai virus/metabolism
14.
Acta Pharm Sin B ; 11(6): 1555-1567, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1082559

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become one major threat to human population health. The RNA-dependent RNA polymerase (RdRp) presents an ideal target of antivirals, whereas nucleoside analogs inhibitor is hindered by the proofreading activity of coronavirus. Herein, we report that corilagin (RAI-S-37) as a non-nucleoside inhibitor of SARS-CoV-2 RdRp, binds directly to RdRp, effectively inhibits the polymerase activity in both cell-free and cell-based assays, fully resists the proofreading activity and potently inhibits SARS-CoV-2 infection with a low 50% effective concentration (EC50) value of 0.13 µmol/L. Computation modeling predicts that RAI-S-37 lands at the palm domain of RdRp and prevents conformational changes required for nucleotide incorporation by RdRp. In addition, combination of RAI-S-37 with remdesivir exhibits additive activity against anti-SARS-CoV-2 RdRp. Together with the current data available on the safety and pharmacokinetics of corilagin as a medicinal herbal agent, these results demonstrate the potential of being developed into one of the much-needed SARS-CoV-2 therapeutics.

15.
Front Immunol ; 11: 586572, 2020.
Article in English | MEDLINE | ID: covidwho-979019

ABSTRACT

COVID-19 pandemic has infected millions of people with mortality exceeding >1 million. There is an urgent need to find therapeutic agents that can help clear the virus to prevent severe disease and death. Identifying effective and safer drugs can provide more options to treat COVID-19 infections either alone or in combination. Here, we performed a high throughput screening of approximately 1,700 US FDA-approved compounds to identify novel therapeutic agents that can effectively inhibit replication of coronaviruses including SARS-CoV-2. Our two-step screen first used a human coronavirus strain OC43 to identify compounds with anti-coronaviral activities. The effective compounds were then screened for their effectiveness in inhibiting SARS-CoV-2. These screens have identified 20 anti-SARS-CoV-2 drugs including previously reported compounds such as hydroxychloroquine, amlodipine besylate, arbidol hydrochloride, tilorone 2HCl, dronedarone hydrochloride, mefloquine, and thioridazine hydrochloride. Five of the newly identified drugs had a safety index (cytotoxic/effective concentration) of >600, indicating a wide therapeutic window compared to hydroxychloroquine which had a safety index of 22 in similar experiments. Mechanistically, five of the effective compounds (fendiline HCl, monensin sodium salt, vortioxetine, sertraline HCl, and salifungin) were found to block SARS-CoV-2 S protein-mediated cell fusion. These FDA-approved compounds can provide much needed therapeutic options that we urgently need during the midst of the pandemic.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , High-Throughput Screening Assays/methods , Pandemics/prevention & control , SARS-CoV-2/drug effects , Animals , COVID-19/epidemiology , COVID-19/virology , Cell Line , Drug Repositioning/methods , Fendiline/therapeutic use , HEK293 Cells , Humans , Monensin/therapeutic use , SARS-CoV-2/physiology , Salicylanilides/therapeutic use , Sertraline/therapeutic use , Vortioxetine/therapeutic use
16.
Nat Commun ; 11(1): 3810, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-690732

ABSTRACT

The pandemic of COVID-19 has posed an unprecedented threat to global public health. However, the interplay between the viral pathogen of COVID-19, SARS-CoV-2, and host innate immunity is poorly understood. Here we show that SARS-CoV-2 induces overt but delayed type-I interferon (IFN) responses. By screening 23 viral proteins, we find that SARS-CoV-2 NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6 and M protein inhibit Sendai virus-induced IFN-ß promoter activation, whereas NSP2 and S protein exert opposite effects. Further analyses suggest that ORF6 inhibits both type I IFN production and downstream signaling, and that the C-terminus region of ORF6 is critical for its antagonistic effect. Finally, we find that IFN-ß treatment effectively blocks SARS-CoV-2 replication. In summary, our study shows that SARS-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Immune Evasion , Interferon Type I/metabolism , Pneumonia, Viral/virology , Signal Transduction , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Cell Line , Coronavirus Infections/immunology , Humans , Immunity, Innate , Interferon-beta/genetics , Interferon-beta/metabolism , Interferon-beta/pharmacology , Mutation , Open Reading Frames , Pandemics , Pneumonia, Viral/immunology , Promoter Regions, Genetic , SARS-CoV-2 , Signal Transduction/drug effects , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication/drug effects
17.
Nat Commun ; 11(1): 1620, 2020 03 27.
Article in English | MEDLINE | ID: covidwho-17830

ABSTRACT

Since 2002, beta coronaviruses (CoV) have caused three zoonotic outbreaks, SARS-CoV in 2002-2003, MERS-CoV in 2012, and the newly emerged SARS-CoV-2 in late 2019. However, little is currently known about the biology of SARS-CoV-2. Here, using SARS-CoV-2 S protein pseudovirus system, we confirm that human angiotensin converting enzyme 2 (hACE2) is the receptor for SARS-CoV-2, find that SARS-CoV-2 enters 293/hACE2 cells mainly through endocytosis, that PIKfyve, TPC2, and cathepsin L are critical for entry, and that SARS-CoV-2 S protein is less stable than SARS-CoV S. Polyclonal anti-SARS S1 antibodies T62 inhibit entry of SARS-CoV S but not SARS-CoV-2 S pseudovirions. Further studies using recovered SARS and COVID-19 patients' sera show limited cross-neutralization, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/physiology , Broadly Neutralizing Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2 , Betacoronavirus/chemistry , Betacoronavirus/immunology , COVID-19 , Calcium Channels/metabolism , Cathepsin L/metabolism , Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Cell Fusion , Coronavirus Infections/immunology , Cross Reactions , Endocytosis , Giant Cells/physiology , HEK293 Cells , Humans , Neutralization Tests , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia, Viral/immunology , Protein Domains , Protein Multimerization , Receptors, Virus/metabolism , SARS Virus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/chemistry , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL