ABSTRACT
Development of SARS-CoV-2 vaccines that protect vulnerable populations is a public health priority. Here, we took a systematic and iterative approach by testing several adjuvants and SARS-CoV-2 antigens to identify a combination that elicits antibodies and protection in young and aged mice. While demonstrating superior immunogenicity to soluble receptor-binding domain (RBD), RBD displayed as a protein nanoparticle (RBD-NP) generated limited antibody responses. Comparison of multiple adjuvants including AddaVax, AddaS03, and AS01B in young and aged mice demonstrated that an oil-in-water emulsion containing carbohydrate fatty acid monosulphate derivative (CMS:O/W) most effectively enhanced RBD-NP-induced cross-neutralizing antibodies and protection across age groups. CMS:O/W enhanced antigen retention in the draining lymph node, induced injection site, and lymph node cytokines, with CMS inducing MyD88-dependent Th1 cytokine polarization. Furthermore, CMS and O/W synergistically induced chemokine production from human PBMCs. Overall, CMS:O/W adjuvant may enhance immunogenicity and protection of vulnerable populations against SARS-CoV-2 and other infectious pathogens.
ABSTRACT
Combining robust proteomics instrumentation with high-throughput enabling liquid chromatography (LC) systems (e.g., timsTOF Pro and the Evosep One system, respectively) enabled mapping the proteomes of 1000s of samples. Fragpipe is one of the few computational protein identification and quantification frameworks that allows for the time-efficient analysis of such large data sets. However, it requires large amounts of computational power and data storage space that leave even state-of-the-art workstations underpowered when it comes to the analysis of proteomics data sets with 1000s of LC mass spectrometry runs. To address this issue, we developed and optimized a Fragpipe-based analysis strategy for a high-performance computing environment and analyzed 3348 plasma samples (6.4 TB) that were longitudinally collected from hospitalized COVID-19 patients under the auspice of the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study. Our parallelization strategy reduced the total runtime by â¼90% from 116 (theoretical) days to just 9 days in the high-performance computing environment. All code is open-source and can be deployed in any Simple Linux Utility for Resource Management (SLURM) high-performance computing environment, enabling the analysis of large-scale high-throughput proteomics studies.
Subject(s)
COVID-19 , Humans , Chromatography, Liquid/methods , Proteomics/methods , Mass Spectrometry/methods , Proteome/analysisABSTRACT
BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.
Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin , Post-Acute COVID-19 SyndromeABSTRACT
BACKGROUND: Immunization of vulnerable populations with distinct immunity often results in suboptimal immunogenicity, durability, and efficacy. METHODS: Safety and immunogenicity profiles of BNT162b2 messenger RNA coronavirus disease 2019 (COVID-19) vaccine, among people living with human immunodeficiency virus (HIV), were evaluated in 28 perinatally HIV-infected patients under antiretroviral therapy (ART) and 65 healthy controls (HCs) with no previous history of COVID-19. Thus, we measured severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and CD4+ T cell responses. Samples were collected before vaccination (baseline, day [D] 0), at the second dose (D21), and at 4 weeks (D28) and 6 months (D180) after D0. Proteomic profiles at D0 and D28 were assessed with a multiplexed proximity extension assay (Olink) on plasma samples. RESULTS: All HIV-infected patients mounted similar anti-SARS-CoV-2 humoral responses to those of HCs, albeit with lower titers of anti-trimeric S at D28 (P = .01). Only peripheral blood mononuclear cells of HIV-infected patients demonstrated at D28 an impaired ability to expand their specific (CD40L+) CD4+ T-cell populations. Similar humoral titers were maintained between the 2 groups at 6-months follow-up. We additionally correlated baseline protein levels to either humoral or cellular responses, identifying clusters of molecules involved in immune response regulation with inverse profiles between the 2 study groups. CONCLUSIONS: Responses of ART-treated HIV-infected patients, compared to those of HCs, were characterized by distinct features especially within the proteomic compartment, supporting their eligibility to an additional dose, similarly to the HC schedule.
Subject(s)
COVID-19 , HIV Infections , Adolescent , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , HIV , HIV Infections/drug therapy , Humans , Immunogenicity, Vaccine , Leukocytes, Mononuclear , Proteomics , RNA, Messenger/therapeutic use , SARS-CoV-2 , Young AdultABSTRACT
Within 2 years after the start of the coronavirus disease 2019 (COVID-19) pandemic, novel severe acute respiratory syndrome coronavirus 2 vaccines were developed, rigorously evaluated in large phase 3 trials, and administered to more than 5 billion individuals globally. However, adverse events of special interest (AESIs) have been described post-implementation, including myocarditis after receipt of messenger RNA (mRNA) vaccines and thrombosis with thrombocytopenia syndrome after receipt of adenoviral vector vaccines. AESIs are rare (<1 to 10/100 000 vaccinees) and less frequent than COVID-19 complications, though they have associated morbidity and mortality. The diversity of COVID-19 vaccine platforms (eg, mRNA, viral vector, protein) and rates of AESIs both between and within platforms (eg, higher rate of myocarditis after mRNA-1273 vs BNT162b2 vaccines) present an important opportunity to advance vaccine safety science. The International Network of Special Immunization Services has been formed with experts in vaccine safety, systems biology, and other relevant disciplines to study cases of AESIs and matched controls to uncover the pathogenesis of rare AESIs and inform vaccine development.
Subject(s)
COVID-19 , Myocarditis , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunization , Pandemics/prevention & control , RNA, MessengerABSTRACT
Within 2 years after the start of the coronavirus disease 2019 (COVID-19) pandemic, novel severe acute respiratory syndrome coronavirus 2 vaccines were developed, rigorously evaluated in large phase 3 trials, and administered to more than 5 billion individuals globally. However, adverse events of special interest (AESIs) have been described post-implementation, including myocarditis after receipt of messenger RNA (mRNA) vaccines and thrombosis with thrombocytopenia syndrome after receipt of adenoviral vector vaccines. AESIs are rare (<1 to 10/100 000 vaccinees) and less frequent than COVID-19 complications, though they have associated morbidity and mortality. The diversity of COVID-19 vaccine platforms (eg, mRNA, viral vector, protein) and rates of AESIs both between and within platforms (eg, higher rate of myocarditis after mRNA-1273 vs BNT162b2 vaccines) present an important opportunity to advance vaccine safety science. The International Network of Special Immunization Services has been formed with experts in vaccine safety, systems biology, and other relevant disciplines to study cases of AESIs and matched controls to uncover the pathogenesis of rare AESIs and inform vaccine development.
Subject(s)
COVID-19 , Myocarditis , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunization , Pandemics/prevention & control , RNA, MessengerABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused significant mortality, especially among older adults whose distinct immune system reflects immunosenescence. Multiple SARS-CoV-2 vaccines have received emergency use authorization and/or licensure from the US Food and Drug Administration and throughout the world. However, their deployment has heighted significant limitations, such by age-dependent immunogenicity, requirements for multiple vaccine doses, refrigeration infrastructure that is not universally available, as well as waning immunity. Thus, there was, and continues to be a need for continued innovation during the pandemic given the desire for dose-sparing, formulations stable at more readily achievable temperatures, need for robust immunogenicity in vulnerable populations, and development of safe and effective pediatric vaccines. In this context, optimal SARS-CoV-2 vaccines may ultimately rely on inclusion of adjuvants as they can potentially enhance protection of vulnerable populations and provide dose-sparing effects enabling single shot protection.
Subject(s)
COVID-19 , Viral Vaccines , Adjuvants, Immunologic , Aged , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Child , Humans , SARS-CoV-2 , Vulnerable PopulationsSubject(s)
COVID-19 , Vaccines , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2ABSTRACT
Older adults, defined as those ≥60 years of age, are a growing population vulnerable to infections including severe acute respiratory syndrome coronavirus 2. Although immunization is a key to protecting this population, immunosenescence can impair responses to vaccines. Adjuvants can increase the immunogenicity of vaccine antigens but have not been systematically compared in older adults. We conducted a scoping review to assess the comparative effectiveness of adjuvants in aged populations. Adjuvants AS01, MF59, AS03, and CpG-oligodeoxynucleotide, included in licensed vaccines, are effective in older human adults. A growing menu of investigational adjuvants, such as Matrix-M and CpG plus alum, showed promising results in early phase clinical trials and preclinical studies. Most studies assessed only 1 or 2 adjuvants and no study has directly compared >3 adjuvants among older adults. Enhanced preclinical approaches enabling direct comparison of multiple adjuvants including human in vitro modeling and age-specific animal models may derisk and accelerate vaccine development for older adults.