Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
3.
Wellcome Open Res ; 5: 145, 2020.
Article in English | MEDLINE | ID: covidwho-1069987

ABSTRACT

Background: In the context of the current coronavirus disease 2019 (COVID-19) pandemic, understanding household transmission of seasonal coronaviruses may inform pandemic control. We aimed to investigate what proportion of seasonal coronavirus transmission occurred within households, measure the risk of transmission in households, and describe the impact of household-related factors of risk of transmission. Methods: Using data from three winter seasons of the UK Flu Watch cohort study, we measured the proportion of symptomatic infections acquired outside and within the home, the household transmission risk and the household secondary attack risk for PCR-confirmed seasonal coronaviruses. We present transmission risk stratified by demographic features of households. Results: We estimated that the proportion of cases acquired outside the home, weighted by age and region, was 90.7% (95% CI 84.6- 94.5, n=173/195) and within the home was 9.3% (5.5-15.4, 22/195). Following a symptomatic coronavirus index case, 14.9% (9.8 - 22.1, 20/134) of households experienced symptomatic transmission to at least one other household member. Onward transmission risk ranged from 11.90% (4.84-26.36, 5/42) to 19.44% (9.21-36.49, 7/36) by strain. The overall household secondary attack risk for symptomatic cases was 8.00% (5.31-11.88, 22/275), ranging across strains from 5.10 (2.11-11.84, 5/98) to 10.14 (4.82- 20.11, 7/69). Median clinical onset serial interval was 7 days (IQR= 6-9.5). Households including older adults, 3+ children, current smokers, contacts with chronic health conditions, and those in relatively deprived areas had the highest transmission risks. Child index cases and male index cases demonstrated the highest transmission risks. Conclusion: Most seasonal coronaviruses appear to be acquired outside the household, with relatively modest risk of onward transmission within households. Transmission risk following an index case appears to vary by demographic household features, with potential overlap between those demonstrating the highest point estimates for seasonal coronavirus transmission risk and COVID-19 susceptibility and poor illness outcomes.

4.
Wellcome Open Res ; 5: 52, 2020.
Article in English | MEDLINE | ID: covidwho-1068025

ABSTRACT

Background: There is currently a pandemic caused by the novel coronavirus SARS-CoV-2. The intensity and duration of this first wave in the UK may be dependent on whether SARS-CoV-2 transmits more effectively in the winter than the summer and the UK Government response is partially built upon the assumption that those infected will develop immunity to reinfection in the short term. In this paper we examine evidence for seasonality and immunity to laboratory-confirmed seasonal coronavirus (HCoV) from a prospective cohort study in England. Methods: In this analysis of the Flu Watch cohort, we examine seasonal trends for PCR-confirmed coronavirus infections (HCoV-NL63, HCoV-OC43, and HCoV-229E) in all participants during winter seasons (2006-2007, 2007-2008, 2008-2009) and during the first wave of the 2009 H1N1 influenza pandemic (May-Sep 2009). We also included data from the pandemic and 'post-pandemic' winter seasons (2009-2010 and 2010-2011) to identify individuals with two confirmed HCoV infections and examine evidence for immunity against homologous reinfection. Results: We tested 1,104 swabs taken during respiratory illness and detected HCoV in 199 during the first four seasons. The rate of confirmed HCoV infection across all seasons was 390 (95% CI 338-448) per 100,000 person-weeks; highest in the Nov-Mar 2008/9 season at 674 (95%CI 537-835). The highest rate was in February at 759 (95% CI 580-975). Data collected during May-Sep 2009 showed there was small amounts of ongoing transmission, with four cases detected during this period. Eight participants had two confirmed infections, of which none had the same strain twice. Conclusion: Our results provide evidence that HCoV infection in England is most intense in winter, but that there is a small amount of ongoing transmission during summer periods. We found some evidence of immunity against homologous reinfection.

5.
Wellcome Open Res ; 5: 88, 2020.
Article in English | MEDLINE | ID: covidwho-1027388

ABSTRACT

Background: International and UK data suggest that Black, Asian and Minority Ethnic (BAME) groups are at increased risk of infection and death from COVID-19. We aimed to explore the risk of death in minority ethnic groups in England using data reported by NHS England. Methods: We used NHS data on patients with a positive COVID-19 test who died in hospitals in England published on 28th April, with deaths by ethnicity available from 1st March 2020 up to 5pm on 21 April 2020. We undertook indirect standardisation of these data (using the whole population of England as the reference) to produce ethnic specific standardised mortality ratios (SMRs) adjusted for age and geographical region. Results: The largest total number of deaths in minority ethnic groups were Indian (492 deaths) and Black Caribbean (460 deaths) groups. Adjusting for region we found a lower risk of death for White Irish (SMR 0.52; 95%CIs 0.45-0.60) and White British ethnic groups (0.88; 95%CIs 0.86-0.0.89), but increased risk of death for Black African (3.24; 95%CIs 2.90-3.62), Black Caribbean (2.21; 95%CIs 2.02-2.41), Pakistani (3.29; 95%CIs 2.96-3.64), Bangladeshi (2.41; 95%CIs 1.98-2.91) and Indian (1.70; 95%CIs 1.56-1.85) minority ethnic groups. Conclusion: Our analysis adds to the evidence that BAME people are at increased risk of death from COVID-19 even after adjusting for geographical region, but was limited by the lack of data on deaths outside of NHS settings and ethnicity denominator data being based on the 2011 census. Despite these limitations, we believe there is an urgent need to take action to reduce the risk of death for BAME groups and better understand why some ethnic groups experience greater risk. Actions that are likely to reduce these inequities include ensuring adequate income protection, reducing occupational risks, reducing barriers in accessing healthcare and providing culturally and linguistically appropriate public health communications.

6.
Preprint in English | ProQuest Central | ID: ppcovidwho-2090

ABSTRACT

Background: International and UK data suggest that Black, Asian and Minority Ethnic (BAME) groups are at increased risk of infection and death from COVID-19. We aimed to explore the risk of death in minority ethnic groups in England using data reported by NHS England. Methods: We used NHS data on patients with a positive COVID-19 test who died in hospitals in England published on 28th April, with deaths by ethnicity available from 1st March 2020 uto 5pm on 21 April 2020. We undertook indirect standardisation of these data (using the whole population of England as the reference) to produce ethnic specific standardised mortality ratios (SMRs) adjusted for age and geographical region. Results: The largest total number of deaths in minority ethnic groups were Indian (492 deaths) and Black Caribbean (460 deaths) groups. Adjusting for region we found a lower risk of death for White Irish (SMR 0.52;95%CIs 0.45-0.60) and White British ethnic groups (0.88;95%CIs 0.86-0.0.89), but increased risk of death for Black African (3.24;95%CIs 2.90-3.62), Black Caribbean (2.21;95%CIs 2.02-2.41), Pakistan(3.29;95%CIs 2.96-3.64), Bangladesh(2.41;95%CIs 1.98-2.91) and Indian (1.70;95%CIs 1.56-1.85) minority ethnic groups. Conclusion: Our analysis adds to the evidence that BAME people are at increased risk of death from COVID-19 even after adjusting for geographical region. We believe there is an urgent need to take action to reduce the risk of death for BAME groups and better understand why some ethnic groups experience greater risk. Actions that are likely to reduce these inequities include ensuring adequate income protection (so that low paid and zero-hours contract workers can afford to follow social distancing recommendations), reducing occupational risks (such as ensuring adequate personal protective equipment), reducing barriers in accessing healthcare and providing culturally and linguistically appropriate public health communications.

7.
Preprint in English | ProQuest Central | ID: ppcovidwho-2089

ABSTRACT

Background: There is currently a pandemic caused by the novel coronavirus SARS-CoV-2. The intensity and duration of this first wave in the UK may be dependent on whether SARS-CoV-2 transmits more effectively in the winter than the summer and the UK Government response is partially built upon the assumption that those infected will develoimmunity to reinfection in the short term. In this paper we examine evidence for seasonality and immunity to laboratory-confirmed seasonal coronavirus (HCoV) from a prospective cohort study in England. Methods: In this analysis of the Flu Watch cohort, we examine seasonal trends for PCR-confirmed coronavirus infections (HCoV-NL63, HCoV-OC43, and HCoV-229E) in all participants during winter seasons (2006-2007, 2007-2008, 2008-2009) and during the first wave of the 2009 H1N1 influenza pandemic (May-Se2009). We also included data from the pandemic and ‘post-pandemic’ winter seasons (2009-2010 and 2010-2011) to identify individuals with two confirmed HCoV infections and examine evidence for immunity against homologous reinfection. Results: We tested 1,104 swabs taken during respiratory illness and detected HCoV in 199 during the first four seasons. The rate of confirmed HCoV infection across all seasons was 390 (95% C338-448) per 100,000 person-weeks;highest in the Nov-Mar 2008/9 season at 674 (95%C537-835). The highest rate was in February at 759 (95% C580-975). Data collected during May-Se2009 showed there was small amounts of ongoing transmission, with four cases detected during this period. Eight participants had two confirmed infections, of which none had the same strain twice. Conclusion: Our results provide evidence that HCoV infection in England is most intense in winter, but that there is a small amount of ongoing transmission during summer periods. We found some evidence of immunity against homologous reinfection.

8.
Preprint in English | ProQuest Central | ID: ppcovidwho-2079

ABSTRACT

Background: In the context of the current coronavirus disease 2019 (COVID-19) pandemic, understanding household transmission of seasonal coronaviruses may inform pandemic control. We aimed to investigate what proportion of seasonal coronavirus transmission occurred within households, measure the risk of transmission in households, and describe the impact of household-related factors of risk of transmission. Methods: Using data from three winter seasons of the UK Flu Watch cohort study, we measured the proportion of symptomatic infections acquired outside and within the home, the household transmission risk and the household secondary attack risk for PCR-confirmed seasonal coronaviruses. We present transmission risk stratified by demographic features of households. Results: We estimated that the proportion of cases acquired outside the home, weighted by age and region, was 90.7% (95% C84.6- 94.5, n=173/195) and within the home was 9.3% (5.5-15.4, 22/195). Following a symptomatic coronavirus index case, 14.9% (9.8 - 22.1, 20/134) of households experienced symptomatic transmission to at least one other household member. Onward transmission risk ranged from 11.90% (4.84-26.36, 5/42) to 19.44% (9.21-36.49, 7/36) by strain. The overall household secondary attack risk for symptomatic cases was 8.00% (5.31-11.88, 22/275), ranging across strains from 5.10 (2.11-11.84, 5/98) to 10.14 (4.82- 20.11, 7/69). Median clinical onset serial interval was 7 days (IQR= 6-9.5). Households including older adults, 3+ children, current smokers, contacts with chronic health conditions, and those in relatively deprived areas had the highest transmission risks. Child index cases and male index cases demonstrated the highest transmission risks. Conclusion: Most seasonal coronaviruses appear to be acquired outside the household, with relatively modest risk of onward transmission within households. Transmission risk following an index case appears to vary by demographic household features, with potential overlabetween those demonstrating the highest point estimates for seasonal coronavirus transmission risk and COVID-19 susceptibility and poor illness outcomes.

9.
Lancet Respir Med ; 8(12): 1181-1191, 2020 12.
Article in English | MEDLINE | ID: covidwho-786438

ABSTRACT

BACKGROUND: People experiencing homelessness are vulnerable to COVID-19 due to the risk of transmission in shared accommodation and the high prevalence of comorbidities. In England, as in some other countries, preventive policies have been implemented to protect this population. We aimed to estimate the avoided deaths and health-care use among people experiencing homelessness during the so-called first wave of COVID-19 in England-ie, the peak of infections occurring between February and May, 2020-and the potential impact of COVID-19 on this population in the future. METHODS: We used a discrete-time Markov chain model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that included compartments for susceptible, exposed, infectious, and removed individuals, to explore the impact of the pandemic on 46 565 individuals experiencing homelessness: 35 817 living in 1065 hostels for homeless people, 3616 sleeping in 143 night shelters, and 7132 sleeping outside. We ran the model under scenarios varying the incidence of infection in the general population and the availability of prevention measures: specialist hotel accommodation, infection control in homeless settings, and mixing with the general population. We divided our scenarios into first wave scenarios (covering Feb 1-May 31, 2020) and future scenarios (covering June 1, 2020-Jan 31, 2021). For each scenario, we ran the model 200 times and reported the median and 95% prediction interval (2·5% and 97·5% quantiles) of the total number of cases, the number of deaths, the number hospital admissions, and the number of intensive care unit (ICU) admissions. FINDINGS: Up to May 31, 2020, we calibrated the model to 4% of the homeless population acquiring SARS-CoV-2, and estimated that 24 deaths (95% prediction interval 16-34) occurred. In this first wave of SARS-CoV-2 infections in England, we estimated that the preventive measures imposed might have avoided 21 092 infections (19 777-22 147), 266 deaths (226-301), 1164 hospital admissions (1079-1254), and 338 ICU admissions (305-374) among the homeless population. If preventive measures are continued, we projected a small number of additional cases between June 1, 2020, and Jan 31, 2021, with 1754 infections (1543-1960), 31 deaths (21-45), 122 hospital admissions (100-148), and 35 ICU admissions (23-47) with a second wave in the general population. However, if preventive measures are lifted, outbreaks in homeless settings might lead to larger numbers of infections and deaths, even with low incidence in the general population. In a scenario with no second wave and relaxed measures in homeless settings in England, we projected 12 151 infections (10 718-13 349), 184 deaths (151-217), 733 hospital admissions (635-822), and 213 ICU admissions (178-251) between June 1, 2020, and Jan 31, 2021. INTERPRETATION: Outbreaks of SARS-CoV-2 in homeless settings can lead to a high attack rate among people experiencing homelessness, even if incidence remains low in the general population. Avoidance of deaths depends on prevention of transmission within settings such as hostels and night shelters. FUNDING: National Institute for Health Research, Wellcome, and Medical Research Council.


Subject(s)
COVID-19/mortality , Homeless Persons/statistics & numerical data , Adult , COVID-19/transmission , England/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Male , Markov Chains , Middle Aged , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...