Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
PLoS One ; 17(9): e0275274, 2022.
Article in English | MEDLINE | ID: covidwho-2054370

ABSTRACT

BACKGROUND: Post-acute sequelae of COVID-19 (PASC) includes a heterogeneous group of patients with variable symptomatology, who may respond to different therapeutic interventions. Identifying phenotypes of PASC and therapeutic strategies for different subgroups would be a major step forward in management. METHODS: In a prospective cohort study of patients hospitalized with COVID-19, 12-month symptoms and quantitative outcome metrics were collected. Unsupervised hierarchical cluster analyses were performed to identify patients with: (1) similar symptoms lasting ≥4 weeks after acute SARS-CoV-2 infection, and (2) similar therapeutic interventions. Logistic regression analyses were used to evaluate the association of these symptom and therapy clusters with quantitative 12-month outcome metrics (modified Rankin Scale, Barthel Index, NIH NeuroQoL). RESULTS: Among 242 patients, 122 (50%) reported ≥1 PASC symptom (median 3, IQR 1-5) lasting a median of 12-months (range 1-15) post-COVID diagnosis. Cluster analysis generated three symptom groups: Cluster1 had few symptoms (most commonly headache); Cluster2 had many symptoms including high levels of anxiety and depression; and Cluster3 primarily included shortness of breath, headache and cognitive symptoms. Cluster1 received few therapeutic interventions (OR 2.6, 95% CI 1.1-5.9), Cluster2 received several interventions, including antidepressants, anti-anxiety medications and psychological therapy (OR 15.7, 95% CI 4.1-59.7) and Cluster3 primarily received physical and occupational therapy (OR 3.1, 95%CI 1.3-7.1). The most severely affected patients (Symptom Cluster 2) had higher rates of disability (worse modified Rankin scores), worse NeuroQoL measures of anxiety, depression, fatigue and sleep disorder, and a higher number of stressors (all P<0.05). 100% of those who received a treatment strategy that included psychiatric therapies reported symptom improvement, compared to 97% who received primarily physical/occupational therapy, and 83% who received few interventions (P = 0.042). CONCLUSIONS: We identified three clinically relevant PASC symptom-based phenotypes, which received different therapeutic interventions with varying response rates. These data may be helpful in tailoring individual treatment programs.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/therapy , Disease Progression , Humans , Phenotype , Prospective Studies , SARS-CoV-2
3.
Neurol Clin Pract ; 11(4): e576-e578, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1974185
4.
Neurology ; 96(4): e575-e586, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1048797

ABSTRACT

OBJECTIVE: To determine the prevalence and associated mortality of well-defined neurologic diagnoses among patients with coronavirus disease 2019 (COVID-19), we prospectively followed hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients and recorded new neurologic disorders and hospital outcomes. METHODS: We conducted a prospective, multicenter, observational study of consecutive hospitalized adults in the New York City metropolitan area with laboratory-confirmed SARS-CoV-2 infection. The prevalence of new neurologic disorders (as diagnosed by a neurologist) was recorded and in-hospital mortality and discharge disposition were compared between patients with COVID-19 with and without neurologic disorders. RESULTS: Of 4,491 patients with COVID-19 hospitalized during the study timeframe, 606 (13.5%) developed a new neurologic disorder in a median of 2 days from COVID-19 symptom onset. The most common diagnoses were toxic/metabolic encephalopathy (6.8%), seizure (1.6%), stroke (1.9%), and hypoxic/ischemic injury (1.4%). No patient had meningitis/encephalitis or myelopathy/myelitis referable to SARS-CoV-2 infection and 18/18 CSF specimens were reverse transcriptase PCR negative for SARS-CoV-2. Patients with neurologic disorders were more often older, male, white, hypertensive, diabetic, intubated, and had higher sequential organ failure assessment (SOFA) scores (all p < 0.05). After adjusting for age, sex, SOFA scores, intubation, history, medical complications, medications, and comfort care status, patients with COVID-19 with neurologic disorders had increased risk of in-hospital mortality (hazard ratio [HR] 1.38, 95% confidence interval [CI] 1.17-1.62, p < 0.001) and decreased likelihood of discharge home (HR 0.72, 95% CI 0.63-0.85, p < 0.001). CONCLUSIONS: Neurologic disorders were detected in 13.5% of patients with COVID-19 and were associated with increased risk of in-hospital mortality and decreased likelihood of discharge home. Many observed neurologic disorders may be sequelae of severe systemic illness.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Hospitalization/statistics & numerical data , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Adult , Age Factors , Aged , Brain Diseases/epidemiology , Brain Diseases/etiology , COVID-19/mortality , Female , Hospital Mortality , Humans , Intubation, Intratracheal/statistics & numerical data , Male , Middle Aged , Nervous System Diseases/mortality , Neurotoxicity Syndromes , New York City/epidemiology , Organ Dysfunction Scores , Patient Discharge/statistics & numerical data , Prospective Studies , Sex Factors , Spinal Cord Diseases/epidemiology , Spinal Cord Diseases/etiology , Young Adult
5.
Front Neurol ; 11: 587384, 2020.
Article in English | MEDLINE | ID: covidwho-1000114

ABSTRACT

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received wide attention, but the mechanisms remain uncertain. Here, we describe computational data from public domain RNA-seq datasets and cerebrospinal fluid data from adult patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of the central nervous system is unlikely. We found that the mRNAs encoding the ACE2 receptor and the TMPRSS2 transmembrane serine protease, both of which are required for viral entry into host cells, are minimally expressed in the major cell types of the brain. In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was validated for CSF studies using stringent criteria; and second, 61% of these patients had CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and that other etiologies are more likely mechanisms.

6.
Chest ; 159(2): 619-633, 2021 02.
Article in English | MEDLINE | ID: covidwho-938825

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has severely affected ICUs and critical care health-care providers (HCPs) worldwide. RESEARCH QUESTION: How do regional differences and perceived lack of ICU resources affect critical care resource use and the well-being of HCPs? STUDY DESIGN AND METHODS: Between April 23 and May 7, 2020, we electronically administered a 41-question survey to interdisciplinary HCPs caring for patients critically ill with COVID-19. The survey was distributed via critical care societies, research networks, personal contacts, and social media portals. Responses were tabulated according to World Bank region. We performed multivariate log-binomial regression to assess factors associated with three main outcomes: limiting mechanical ventilation (MV), changes in CPR practices, and emotional distress and burnout. RESULTS: We included 2,700 respondents from 77 countries, including physicians (41%), nurses (40%), respiratory therapists (11%), and advanced practice providers (8%). The reported lack of ICU nurses was higher than that of intensivists (32% vs 15%). Limiting MV for patients with COVID-19 was reported by 16% of respondents, was lowest in North America (10%), and was associated with reduced ventilator availability (absolute risk reduction [ARR], 2.10; 95% CI, 1.61-2.74). Overall, 66% of respondents reported changes in CPR practices. Emotional distress or burnout was high across regions (52%, highest in North America) and associated with being female (mechanical ventilation, 1.16; 95% CI, 1.01-1.33), being a nurse (ARR, 1.31; 95% CI, 1.13-1.53), reporting a shortage of ICU nurses (ARR, 1.18; 95% CI, 1.05-1.33), reporting a shortage of powered air-purifying respirators (ARR, 1.30; 95% CI, 1.09-1.55), and experiencing poor communication from supervisors (ARR, 1.30; 95% CI, 1.16-1.46). INTERPRETATION: Our findings demonstrate variability in ICU resource availability and use worldwide. The high prevalence of provider burnout and its association with reported insufficient resources and poor communication from supervisors suggest a need for targeted interventions to support HCPs on the front lines.


Subject(s)
COVID-19/therapy , Critical Care , Health Personnel/psychology , Health Resources , Health Workforce , Personal Protective Equipment/supply & distribution , Burnout, Professional/psychology , Critical Care Nursing , Female , Financial Stress/psychology , Health Care Rationing , Hospital Bed Capacity , Humans , Male , N95 Respirators/supply & distribution , Nurses/psychology , Nurses/supply & distribution , Physicians/psychology , Physicians/supply & distribution , Psychological Distress , Respiratory Protective Devices/supply & distribution , Resuscitation Orders , SARS-CoV-2 , Surveys and Questionnaires , Ventilators, Mechanical/supply & distribution
7.
Res Sq ; 2020 Oct 26.
Article in English | MEDLINE | ID: covidwho-903183

ABSTRACT

Background: Zinc impairs replication of RNA viruses such as SARS-CoV-1, and may be effective against SARS-CoV-2. However, to achieve adequate intracellular zinc levels, administration with an ionophore, which increases intracellular zinc levels, may be necessary. We evaluated the impact of zinc with an ionophore (Zn+ionophore) on COVID-19 in-hospital mortality rates. Methods: A multicenter cohort study was conducted of 3,473 adult hospitalized patients with reverse-transcriptase-polymerase-chain-reaction (RT-PCR) positive SARS-CoV-2 infection admitted to four New York City hospitals between March 10 through May 20, 2020. Exclusion criteria were: death or discharge within 24h, comfort-care status, clinical trial enrollment, treatment with an IL-6 inhibitor or remdesivir. Patients who received Zn+ionophore were compared to patients who did not using multivariable time-dependent cox proportional hazards models for time to in-hospital death adjusting for confounders including age, sex, race, BMI, diabetes, week of admission, hospital location, sequential organ failure assessment (SOFA) score, intubation, acute renal failure, neurological events, treatment with corticosteroids, azithromycin or lopinavir/ritonavir and the propensity score of receiving Zn+ionophore. A sensitivity analysis was performed using a propensity score-matched cohort of patients who did or did not receive Zn+ionophore matched by age, sex and ventilator status. Results: Among 3,473 patients (median age 64, 1947 [56%] male, 522 [15%] ventilated, 545[16%] died), 1,006 (29%) received Zn+ionophore. Zn+ionophore was associated with a 24% reduced risk of in-hospital mortality (12% of those who received Zn+ionophore died versus 17% who did not; adjusted Hazard Ratio [aHR] 0.76, 95% CI 0.60-0.96, P=0.023). More patients who received Zn+ionophore were discharged home (72% Zn+ionophore vs 67% no Zn+ionophore, P=0.003) Neither Zn nor the ionophore alone were associated with decreased mortality rates. Propensity score-matched sensitivity analysis (N=1356) validated these results (Zn+ionophore aHR for mortality 0.63, 95%CI 0.44-0.91, P=0.015). There were no significant interactions for Zn+ionophore with other COVID-19 specific medications. Conclusions: Zinc with an ionophore was associated with increased rates of discharge home and a 24% reduced risk of in-hospital mortality among COVID-19 patients, while neither zinc alone nor the ionophore alone reduced mortality. Further randomized trials are warranted.

8.
J Thromb Thrombolysis ; 51(4): 953-960, 2021 May.
Article in English | MEDLINE | ID: covidwho-784708

ABSTRACT

Intracerebral hemorrhage (ICH) can be a devastating complication of coronavirus disease (COVID-19). We aimed to assess risk factors associated with ICH in this population. We performed a retrospective cohort study of adult patients admitted to NYU Langone Health system between March 1 and April 27 2020 with a positive nasopharyngeal swab polymerase chain reaction test result and presence of primary nontraumatic intracranial hemorrhage or hemorrhagic conversion of ischemic stroke on neuroimaging. Patients with intracranial procedures, malignancy, or vascular malformation were excluded. We used regression models to estimate odds ratios and 95% confidence intervals (OR, 95% CI) of the association between ICH and covariates. We also used regression models to determine association between ICH and mortality. Among 3824 patients admitted with COVID-19, 755 patients had neuroimaging and 416 patients were identified after exclusion criteria were applied. The mean (standard deviation) age was 69.3 (16.2), 35.8% were women, and 34.9% were on therapeutic anticoagulation. ICH occurred in 33 (7.9%) patients. Older age, non-Caucasian race, respiratory failure requiring mechanical ventilation, and therapeutic anticoagulation were associated with ICH on univariate analysis (p < 0.01 for each variable). In adjusted regression models, anticoagulation use was associated with a five-fold increased risk of ICH (OR 5.26, 95% CI 2.33-12.24, p < 0.001). ICH was associated with increased mortality (adjusted OR 2.6, 95 % CI 1.2-5.9). Anticoagulation use is associated with increased risk of ICH in patients with COVID-19. Further investigation is required to elucidate underlying mechanisms and prevention strategies in this population.


Subject(s)
Anticoagulants/therapeutic use , COVID-19 , Cerebral Hemorrhage , Respiration, Artificial , Respiratory Insufficiency , Aged , COVID-19/blood , COVID-19/complications , COVID-19/epidemiology , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/mortality , Cohort Studies , Female , Humans , Ischemic Stroke/complications , Ischemic Stroke/diagnostic imaging , Male , Neuroimaging/methods , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Risk Assessment , Risk Factors , SARS-CoV-2/isolation & purification , United States/epidemiology
9.
Neurocrit Care ; 34(3): 748-759, 2021 06.
Article in English | MEDLINE | ID: covidwho-728269

ABSTRACT

BACKGROUND AND PURPOSE: While the thrombotic complications of COVID-19 have been well described, there are limited data on clinically significant bleeding complications including hemorrhagic stroke. The clinical characteristics, underlying stroke mechanism, and outcomes in this particular subset of patients are especially salient as therapeutic anticoagulation becomes increasingly common in the treatment and prevention of thrombotic complications of COVID-19. METHODS: We conducted a retrospective cohort study of patients with hemorrhagic stroke (both non-traumatic intracerebral hemorrhage and spontaneous non-aneurysmal subarachnoid hemorrhage) who were hospitalized between March 1, 2020, and May 15, 2020, within a major healthcare system in New York, during the coronavirus pandemic. Patients with hemorrhagic stroke on admission and who developed hemorrhage during hospitalization were both included. We compared the clinical characteristics of patients with hemorrhagic stroke and COVID-19 to those without COVID-19 admitted to our hospital system between March 1, 2020, and May 15, 2020 (contemporary controls), and March 1, 2019, and May 15, 2019 (historical controls). Demographic variables and clinical characteristics between the individual groups were compared using Fischer's exact test for categorical variables and nonparametric test for continuous variables. We adjusted for multiple comparisons using the Bonferroni method. RESULTS: During the study period in 2020, out of 4071 patients who were hospitalized with COVID-19, we identified 19 (0.5%) with hemorrhagic stroke. Of all COVID-19 with hemorrhagic stroke, only three had isolated non-aneurysmal SAH with no associated intraparenchymal hemorrhage. Among hemorrhagic stroke in patients with COVID-19, coagulopathy was the most common etiology (73.7%); empiric anticoagulation was started in 89.5% of these patients versus 4.2% in contemporary controls (p ≤ .001) and 10.0% in historical controls (p ≤ .001). Compared to contemporary and historical controls, patients with COVID-19 had higher initial NIHSS scores, INR, PTT, and fibrinogen levels. Patients with COVID-19 also had higher rates of in-hospital mortality (84.6% vs. 4.6%, p ≤ 0.001). Sensitivity analyses excluding patients with strictly subarachnoid hemorrhage yielded similar results. CONCLUSION: We observed an overall low rate of imaging-confirmed hemorrhagic stroke among patients hospitalized with COVID-19. Most hemorrhages in patients with COVID-19 infection occurred in the setting of therapeutic anticoagulation and were associated with increased mortality. Further studies are needed to evaluate the safety and efficacy of therapeutic anticoagulation in patients with COVID-19.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/complications , Hemorrhagic Stroke/epidemiology , Aged , Aged, 80 and over , COVID-19/mortality , Female , Hemorrhagic Stroke/diagnosis , Hemorrhagic Stroke/virology , Hospitalization , Humans , Male , Middle Aged , New York City , Retrospective Studies , Risk Factors , Survival Rate , COVID-19 Drug Treatment
11.
Stroke ; 51(9): 2649-2655, 2020 09.
Article in English | MEDLINE | ID: covidwho-695153

ABSTRACT

BACKGROUND AND PURPOSE: We conducted this study to investigate the prevalence and distribution of cerebral microbleeds and leukoencephalopathy in hospitalized patients with coronavirus disease 2019 (COVID-19) and correlate with clinical, laboratory, and functional outcomes. METHODS: We performed a retrospective chart review of 4131 COVID-19 positive adult patients who were admitted to 3 tertiary care hospitals of an academic medical center at the epicenter of the COVID-19 pandemic in New York City from March 1, 2020, to May 10, 2020, to identify patients who had magnetic resonance imaging (MRI) of the brain. We evaluated the MRIs in detail, and identified a subset of patients with leukoencephalopathy and/or cerebral microbleeds. We compared clinical, laboratory, and functional outcomes for these patients to patients who had a brain MRI that did not show these findings. RESULTS: Of 115 patients who had an MRI of the brain performed, 35 (30.4%) patients had leukoencephalopathy and/or cerebral microbleeds. Patients with leukoencephalopathy and/or cerebral microbleeds had neuroimaging performed later during the hospitalization course (27 versus 10.6 days; P<0.001), were clinically sicker at the time of brain MRI (median GCS 6 versus 14; P<0.001), and had higher peak D-dimer levels (8018±6677 versus 3183±3482; P<0.001), lower nadir platelet count (116.9±62.2 versus 158.3±76.2; P=0.03), higher peak international normalized ratio (2.2 versus 1.57; P<0.001) values when compared with patients who had a brain MRI that did not show these findings. They required longer ventilator support (34.6 versus 9.1 days; P<0.001) and were more likely to have moderate and severe acute respiratory distress syndrome score (88.6% versus 23.8%, P<0.001). These patients had longer hospitalizations (42.1 versus 20.9 days; P<0.001), overall worse functional status on discharge (mRS 5 versus 4; P=0.001), and higher mortality (20% versus 9%; P=0.144). CONCLUSIONS: The presence of leukoencephalopathy and/or cerebral microbleeds is associated with a critical illness, increased mortality, and worse functional outcome in patients with COVID-19.


Subject(s)
Cerebral Hemorrhage/complications , Coronavirus Infections/complications , Leukoencephalopathies/complications , Pneumonia, Viral/complications , Aged , COVID-19 , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/epidemiology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/epidemiology , Critical Illness , Female , Fibrin Fibrinogen Degradation Products/analysis , Hospitalization , Humans , International Normalized Ratio , Length of Stay , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/epidemiology , Magnetic Resonance Imaging , Male , Middle Aged , New York City/epidemiology , Pandemics , Platelet Count , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/epidemiology , Prevalence , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Treatment Outcome
12.
Am J Hosp Palliat Care ; 37(10): 873-874, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-646603

ABSTRACT

The COVID-19 pandemic has precipitated the need for frequent end-of-life discussions. The circumstances surrounding these conversations are quite atypical. Here, I describe one such goals-of-care discussion during the pandemic and how I relied on the precedent of prior goals-of-care discussions to guide me through an unprecedented situation.


Subject(s)
Brain Injuries, Traumatic/therapy , Coronavirus Infections/therapy , Pandemics , Patient Care Planning , Pneumonia, Viral/therapy , COVID-19 , Communication , Family , Humans , Palliative Care , Terminal Care
SELECTION OF CITATIONS
SEARCH DETAIL