Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Antiviral Res ; 202: 105311, 2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1773103

ABSTRACT

Nelfinavir is an HIV protease inhibitor that has been widely prescribed as a component of highly active antiretroviral therapy, and has been reported to exert in vitro antiviral activity against SARS-CoV-2. We here assessed the effect of Nelfinavir in a SARS-CoV-2 infection model in hamsters. Despite the fact that Nelfinavir, [50 mg/kg twice daily (BID) for four consecutive days], did not reduce viral RNA load and infectious virus titres in the lung of infected animals, treatment resulted in a substantial improvement of SARS-CoV-2-induced lung pathology. This was accompanied by a dense infiltration of neutrophils in the lung interstitium which was similarly observed in non-infected hamsters. Nelfinavir resulted also in a marked increase in activated neutrophils in the blood, as observed in non-infected animals. Although Nelfinavir treatment did not alter the expression of chemoattractant receptors or adhesion molecules on human neutrophils, in vitro migration of human neutrophils to the major human neutrophil attractant CXCL8 was augmented by this protease inhibitor. Nelfinavir appears to induce an immunomodulatory effect associated with increasing neutrophil number and functionality, which may be linked to the marked improvement in SARS-CoV-2 lung pathology independent of its lack of antiviral activity. Since Nelfinavir is no longer used for the treatment of HIV, we studied the effect of two other HIV protease inhibitors, namely the combination Lopinavir/Ritonavir (Kaletra™) in this model. This combination resulted in a similar protective effect as Nelfinavir against SARS-CoV2 induced lung pathology in hamsters.

2.
J Med Virol ; 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1756615

ABSTRACT

Although vaccines are currently used to control the coronavirus disease 2019 (COVID-19) pandemic, treatment options are urgently needed for those who cannot be vaccinated and for future outbreaks involving new severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) strains or coronaviruses not covered by current vaccines. Thus far, few existing antivirals are known to be effective against SARS-CoV-2 and clinically successful against COVID-19. As part of an immediate response to the COVID-19 pandemic, a high-throughput, high content imaging-based SARS-CoV-2 infection assay was developed in VeroE6 African green monkey kidney epithelial cells expressing a stable enhanced green fluorescent protein (VeroE6-eGFP cells) and was used to screen a library of 5676 compounds that passed Phase 1 clinical trials. Eight drugs (nelfinavir, RG-12915, itraconazole, chloroquine, hydroxychloroquine, sematilide, remdesivir, and doxorubicin) were identified as inhibitors of in vitro anti-SARS-CoV-2 activity in VeroE6-eGFP and/or Caco-2 cell lines. However, apart from remdesivir, toxicity and pharmacokinetic data did not support further clinical development of these compounds for COVID-19 treatment.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330826

ABSTRACT

The SARS-CoV-2 Omicron variant exhibits very high levels of transmission, pronounced resistance to authorized therapeutic human monoclonal antibodies and reduced sensitivity to vaccine-induced immunity. Here we describe P2G3, a human monoclonal antibody (mAb) isolated from a previously infected and vaccinated donor, which displays picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other current variants, and is thus markedly more potent than all authorized or clinically advanced anti-SARS-CoV-2 mAbs. Structural characterization of P2G3 Fab in complex with the Omicron Spike demonstrates unique binding properties to both down and up spike trimer conformations at an epitope that partially overlaps with the receptor-binding domain (RBD), yet is distinct from those bound by all other characterized mAbs. This distinct epitope and angle of attack allows P2G3 to overcome all the Omicron mutations abolishing or impairing neutralization by other anti-SARS-COV-2 mAbs, and P2G3 accordingly confers complete prophylactic protection in the SARS-CoV-2 Omicron monkey challenge model. Finally, although we could isolate in vitro SARS-CoV2 mutants escaping neutralization by P2G3 or by P5C3, a previously described broadly active Class 1 mAb, we found these viruses to be lowly infectious and their key mutations extremely rare in the wild, and we could demonstrate that P2G3/P5C3 efficiently cross-neutralized one another's escapees. We conclude that this combination of mAbs has great prospects in both the prophylactic and therapeutic settings to protect from Omicron and other VOCs.

4.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327354

ABSTRACT

ABSTRACT Although vaccines are currently used to control the coronavirus disease 2019 (COVID-19) pandemic, treatment options are urgently needed for those who cannot be vaccinated and for future outbreaks involving new severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) strains or coronaviruses not covered by current vaccines. Thus far, few existing antivirals are known to be effective against SARS-CoV-2 and clinically successful against COVID-19. As part of an immediate response to the COVID-19 pandemic, a high-throughput, high content imaging–based SARS-CoV-2 infection assay was developed in VeroE6-eGFP cells and was used to screen a library of 5676 compounds that passed phase 1 clinical trials. Eight candidates (nelfinavir, RG-12915, itraconazole, chloroquine, hydroxychloroquine, sematilide, remdesivir, and doxorubicin) with in vitro anti–SARS-CoV-2 activity in VeroE6-eGFP and/or Caco-2 cell lines were identified. However, apart from remdesivir, toxicity and pharmacokinetic data did not support further clinical development of these compounds for COVID-19 treatment.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-310380

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies and reduced sensitivity to vaccine-induced immunity. Here, we screened B cells from COVID-19 donors and identified P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOC) identified to date. Structural characterization of P5C3 Fab in complex with the Spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 showed complete prophylactic protection in the SARS-CoV-2 infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.Funding: This CARE project has received funding from the Innovative MedicinesInitiative 2 Joint Undertaking (JU) under grant agreement No 101005077. The JU receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA and BILL & MELINDA GATES FOUNDATION, GLOBAL HEALTH DRUG DISCOVERYINSTITUTE, UNIVERSITY OF DUNDEE. Furthermore, funding was also provided through the Lausanne University Hospital, through the Swiss Vaccine Research Institute to G.P., and through the EPFL COVID fund to D.T.Conflict of Interest: None to declare. Ethical Approval: Study design and use of subject samples were approved by the Institutional Review Board of the Lausanne University Hospital and the ‘Commission d’éthique du Canton de Vaud’ (CER-VD).

6.
Molecules ; 27(3)2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1686900

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure-activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Heterocyclic Compounds/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Chlorocebus aethiops , High-Throughput Screening Assays , Microbial Sensitivity Tests , Structure-Activity Relationship , Vero Cells
7.
Antiviral Res ; 198: 105252, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654043

ABSTRACT

We assessed the in vitro antiviral activity of remdesivir and its parent nucleoside GS-441524, molnupiravir and its parent nucleoside EIDD-1931 and the viral protease inhibitor nirmatrelvir against the ancestral SARS-CoV2 strain and the five variants of concern including Omicron. VeroE6-GFP cells were pre-treated overnight with serial dilutions of the compounds before infection. The GFP signal was determined by high-content imaging on day 4 post-infection. All molecules have equipotent antiviral activity against the ancestral virus and the VOCs Alpha, Beta, Gamma, Delta and Omicron. These findings are in line with the observation that the target proteins of these antivirals (respectively the viral RNA dependent RNA polymerase and the viral main protease Mpro) are highly conserved.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Lactams/therapeutic use , Leucine/therapeutic use , Nitriles/therapeutic use , Proline/therapeutic use , SARS-CoV-2/drug effects , Adenosine/analogs & derivatives , Adenosine/therapeutic use , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cytidine/therapeutic use , Humans , Microbial Sensitivity Tests , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Vero Cells , Virus Replication/drug effects
8.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-295917

ABSTRACT

Effective therapies are needed to combat emerging viruses. Seventeen candidates that rescue cells from SARS-CoV-2-induced lethality and target diverse functions emerged in a screen of 4,413 compounds. Among the hits was lapatinib, an approved inhibitor of the ErbB family of receptor tyrosine kinases. Lapatinib and other pan-ErbB inhibitors suppress replication of SARS-CoV-2 and unrelated viruses with a high barrier to resistance. ErbB4, but not lapatinib’s cancer targets ErbB1 and ErbB2, is required for SARS-CoV-2 entry and encephalitis alphavirus infection and is a molecular target mediating lapatinib’s antiviral effect. In human lung organoids, lapatinib protects from SARS-CoV-2-induced activation of pathways implicated in non-infectious acute lung injury and fibrosis downstream of ErbBs (p38-MAPK, MEK/ERK, and AKT/mTOR), pro-inflammatory cytokine production, and epithelial barrier injury. These findings reveal regulation of viral infection, inflammation, and lung injury via ErbBs and propose approved candidates to counteract these effects with implications for pandemic coronaviruses and unrelated viruses.

10.
EBioMedicine ; 72: 103595, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1433162

ABSTRACT

BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment.


Subject(s)
Amides/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Lung/virology , Pyrazines/therapeutic use , Amides/pharmacology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/transmission , Cytidine/pharmacology , Cytidine/therapeutic use , Disease Models, Animal , Drug Therapy, Combination , Female , Hydroxylamines/pharmacology , Mesocricetus , Pyrazines/pharmacology , RNA, Viral , Treatment Outcome , Viral Load
11.
Cell Rep ; 37(2): 109814, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1433045

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Subject(s)
Broadly Neutralizing Antibodies/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Cell Line , Cricetinae , Disease Models, Animal , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Neutralization Tests , Protein Binding/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Structure-Activity Relationship , Vaccination
12.
ACS Pharmacol Transl Sci ; 4(3): 1096-1110, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1313542

ABSTRACT

Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 µM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.

13.
Antiviral Res ; 193: 105127, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293551

ABSTRACT

In this study, a series of 10 quinoline analogues was evaluated for their in vitro antiviral activity against a panel of alpha- and beta-coronaviruses, including the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2), as well as the human coronaviruses (HCoV) 229E and OC43. Chloroquine and hydroxychloroquine were the most potent with antiviral EC50 values in the range of 0.12-12 µM. Chloroquine displayed the most favorable selectivity index (i.e. ratio cytotoxic versus antiviral concentration), being 165 for HCoV-OC43 in HEL cells. Potent anti-coronavirus activity was also observed with amodiaquine, ferroquine and mefloquine, although this was associated with substantial cytotoxicity for mefloquine. Primaquine, quinidine, quinine and tafenoquine only blocked coronavirus replication at higher concentrations, while piperaquine completely lacked antiviral and cytotoxic effects. A time-of-addition experiment in HCoV-229E-infected HEL cells revealed that chloroquine interferes with viral entry at a post-attachment stage. Using confocal microscopy, no viral RNA synthesis could be detected upon treatment of SARS-CoV-2-infected cells with chloroquine. The inhibition of SARS-CoV-2 replication by chloroquine and hydroxychloroquine coincided with an inhibitory effect on the autophagy pathway as visualized by a dose-dependent increase in LC3-positive puncta. The latter effect was less pronounced or even absent with the other quinolines. In summary, we showed that several quinoline analogues, including chloroquine, hydroxychloroquine, amodiaquine, ferroquine and mefloquine, exhibit broad anti-coronavirus activity in vitro.


Subject(s)
Antimalarials/pharmacology , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus/drug effects , Quinolines/pharmacology , Animals , COVID-19/drug therapy , Chlorocebus aethiops , Chloroquine/pharmacology , Coronavirus 229E, Human/drug effects , Coronavirus OC43, Human/drug effects , Humans , Hydroxychloroquine/pharmacology , SARS-CoV-2/drug effects , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
14.
Sci Rep ; 11(1): 13208, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1281733

ABSTRACT

Effective agents to treat coronavirus infection are urgently required, not only to treat COVID-19, but to prepare for future outbreaks. Repurposed anti-virals such as remdesivir and human anti-inflammatories such as barcitinib have received emergency approval but their overall benefits remain unclear. Vaccines are the most promising prospect for COVID-19, but will need to be redeveloped for any future coronavirus outbreak. Protecting against future outbreaks requires the identification of targets that are conserved between coronavirus strains and amenable to drug discovery. Two such targets are the main protease (Mpro) and the papain-like protease (PLpro) which are essential for the coronavirus replication cycle. We describe the discovery of two non-antiviral therapeutic agents, the caspase-1 inhibitor SDZ 224015 and Tarloxotinib that target Mpro and PLpro, respectively. These were identified through extensive experimental screens of the drug repurposing ReFRAME library of 12,000 therapeutic agents. The caspase-1 inhibitor SDZ 224015, was found to be a potent irreversible inhibitor of Mpro (IC50 30 nM) while Tarloxotinib, a clinical stage epidermal growth factor receptor inhibitor, is a sub micromolar inhibitor of PLpro (IC50 300 nM, Ki 200 nM) and is the first reported PLpro inhibitor with drug-like properties. SDZ 224015 and Tarloxotinib have both undergone safety evaluation in humans and hence are candidates for COVID-19 clinical evaluation.


Subject(s)
Antiviral Agents/chemistry , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Repositioning , Oligopeptides/chemistry , Cell Line , Humans , Serpins/chemistry , Viral Proteins/chemistry
15.
J Med Virol ; 93(7): 4454-4460, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1263094

ABSTRACT

Although vaccination campaigns are currently being rolled out to prevent coronavirus disease (COVID-19), antivirals will remain an important adjunct to vaccination. Antivirals against coronaviruses do not exist, hence global drug repurposing efforts have been carried out to identify agents that may provide clinical benefit to patients with COVID-19. Itraconazole, an antifungal agent, has been reported to have activity against animal coronaviruses. Using cell-based phenotypic assays, the in vitro antiviral activity of itraconazole and 17-OH itraconazole was assessed against clinical isolates from a German and Belgian patient infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Itraconazole demonstrated antiviral activity in human Caco-2 cells (EC50 = 2.3 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). Similarly, its primary metabolite, 17-OH itraconazole, showed inhibition of SARS-CoV-2 activity (EC50 = 3.6 µM). Remdesivir inhibited viral replication with an EC50 = 0.4 µM. Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10 , as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively. The viral yield reduction brought about by remdesivir or GS-441524 (parent nucleoside of the antiviral prodrug remdesivir; positive control) was more pronounced, with an approximately 3-log10 drop and >4-log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively. Itraconazole and 17-OH itraconazole exert in vitro low micromolar activity against SARS-CoV-2. Despite the in vitro antiviral activity, itraconazole did not result in a beneficial effect in hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/drug therapy , Furans/pharmacology , Itraconazole/pharmacology , Pyrroles/pharmacology , SARS-CoV-2/drug effects , Triazines/pharmacology , Adenosine/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Drug Repositioning , Humans , Vero Cells , Virus Replication/drug effects
16.
J Med Virol ; 93(7): 4454-4460, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1118165

ABSTRACT

Although vaccination campaigns are currently being rolled out to prevent coronavirus disease (COVID-19), antivirals will remain an important adjunct to vaccination. Antivirals against coronaviruses do not exist, hence global drug repurposing efforts have been carried out to identify agents that may provide clinical benefit to patients with COVID-19. Itraconazole, an antifungal agent, has been reported to have activity against animal coronaviruses. Using cell-based phenotypic assays, the in vitro antiviral activity of itraconazole and 17-OH itraconazole was assessed against clinical isolates from a German and Belgian patient infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Itraconazole demonstrated antiviral activity in human Caco-2 cells (EC50 = 2.3 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). Similarly, its primary metabolite, 17-OH itraconazole, showed inhibition of SARS-CoV-2 activity (EC50 = 3.6 µM). Remdesivir inhibited viral replication with an EC50 = 0.4 µM. Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10 , as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively. The viral yield reduction brought about by remdesivir or GS-441524 (parent nucleoside of the antiviral prodrug remdesivir; positive control) was more pronounced, with an approximately 3-log10 drop and >4-log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively. Itraconazole and 17-OH itraconazole exert in vitro low micromolar activity against SARS-CoV-2. Despite the in vitro antiviral activity, itraconazole did not result in a beneficial effect in hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/drug therapy , Furans/pharmacology , Itraconazole/pharmacology , Pyrroles/pharmacology , SARS-CoV-2/drug effects , Triazines/pharmacology , Adenosine/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Drug Repositioning , Humans , Vero Cells , Virus Replication/drug effects
17.
J Phys Chem Lett ; 12(7): 1793-1802, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1081668

ABSTRACT

In the search for inhibitors of COVID-19, we have targeted the interaction between the human angiotensin-converting enzyme 2 (ACE2) receptor and the spike receptor binding domain (S1-RBD) of SARS-CoV-2. Virtual screening of a library of natural compounds identified Kobophenol A as a potential inhibitor. Kobophenol A was then found to block the interaction between the ACE2 receptor and S1-RBD in vitro with an IC50 of 1.81 ± 0.04 µM and inhibit SARS-CoV-2 viral infection in cells with an EC50 of 71.6 µM. Blind docking calculations identified two potential binding sites, and molecular dynamics simulations predicted binding free energies of -19.0 ± 4.3 and -24.9 ± 6.9 kcal/mol for Kobophenol A to the spike/ACE2 interface and the ACE2 hydrophobic pocket, respectively. In summary, Kobophenol A, identified through docking studies, is the first compound that inhibits SARS-CoV-2 binding to cells through blocking S1-RBD to the host ACE2 receptor and thus may serve as a good lead compound against COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , Drug Design , Receptors, Coronavirus/metabolism , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Stilbenes/pharmacology , Animals , Chlorocebus aethiops , Computer Simulation , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/metabolism , Vero Cells
18.
Nat Commun ; 11(1): 5838, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-933686

ABSTRACT

Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , STAT2 Transcription Factor/metabolism , Signal Transduction , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cricetinae , Immunity, Innate , Interferon Type I/genetics , Interferon Type I/metabolism , Lung/pathology , Lung/virology , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2 , STAT2 Transcription Factor/genetics , Virus Replication
19.
Antiviral Res ; 182: 104924, 2020 10.
Article in English | MEDLINE | ID: covidwho-743859

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay. Compared with a traditional FRET readout, the label-free SAMDI-MS assay offers greater sensitivity and eliminates false positive inhibition from compound interference with the optical signal. The SAMDI-MS assay was optimized and validated with known inhibitors of coronavirus 3CLpro such as GC376 (IC50 = 0.060 µM), calpain inhibitors II and XII (IC50 ~20-25 µM). The FDA-approved drugs shikonin, disulfiram, and ebselen did not inhibit SARS-CoV-2 3CLpro activity in the SAMDI-MS assay under physiologically relevant reducing conditions. The three drugs did not directly inhibit human ß-coronavirus OC-43 or SARS-CoV-2 in vitro, but instead induced cell death. In conclusion, the SAMDI-MS 3CLpro assay, combined with antiviral and cytotoxic assessment, provides a robust platform to evaluate antiviral agents directed against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/enzymology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Viral Nonstructural Proteins/antagonists & inhibitors , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Glycoproteins/pharmacology , HeLa Cells , Humans , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
20.
J Med Chem ; 63(9): 4562-4578, 2020 05 14.
Article in English | MEDLINE | ID: covidwho-613484

ABSTRACT

The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Enterovirus/drug effects , Lactams/pharmacology , Peptidomimetics/pharmacology , Virus Replication/drug effects , 3C Viral Proteases , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Cell Line, Tumor , Chlorocebus aethiops , Coronavirus/enzymology , Coronavirus 3C Proteases , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Drug Design , Enterovirus/enzymology , Humans , Lactams/chemical synthesis , Lactams/metabolism , Peptidomimetics/chemical synthesis , Peptidomimetics/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Binding , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL