Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Preprint in English | bioRxiv | ID: ppbiorxiv-486173


Large-scale populations in the world have been vaccinated with COVID-19 vaccines, however, breakthrough infections of SARS-CoV-2 are still growing rapidly due to the emergence of immune-evasive variants, especially Omicron. It is urgent to develop effective broad-spectrum vaccines to better control the pandemic of these variants. Here, we present a mosaic-type trimeric form of spike receptor-binding domain (mos-tri-RBD) as a broad-spectrum vaccine candidate, which carries the key mutations from Omicron and other circulating variants. Tests in rats showed that the designed mos-tri-RBD, whether used alone or as a booster shot, elicited potent cross-neutralizing antibodies against not only Omicron but also other immune-evasive variants. Neutralizing antibody titers induced by mos-tri-RBD were substantially higher than those elicited by homo-tri-RBD (containing homologous RBDs from prototype strain) or the inactivated vaccine BBIBP-CorV. Our study indicates that mos-tri-RBD is highly immunogenic, which may serve as a broad-spectrum vaccine candidate in combating SARS-CoV-2 variants including Omicron.

Preprint in English | medRxiv | ID: ppmedrxiv-22272062


The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with immune escape ability raises the urgent need for developing cross-neutralizing vaccines against the virus. NVSI-06-08 is a potential broad-spectrum recombinant COVID-19 vaccine that integrates the antigens from multiple SARS-CoV-2 strains into a single immunogen. Here, we evaluated the safety and immunogenicity of NVSI-06-08 as a heterologous booster dose in adults previously vaccinated with the inactivated vaccine BBIBP-CorV in a randomized, double-blind, controlled, phase 2 trial conducted in the United Arab Emirates (NCT05069129). Three groups of healthy adults over 18 years of age (600 participants per group) who had administered two doses of BBIBP-CorV 4-6-month, 7-9-month and >9-month earlier, respectively, were vaccinated with either a homologous booster of BBIBP-CorV or a heterologous booster of NVSI-06-08. The primary outcome was immunogenicity and safety of booster vaccinations. The exploratory outcome was cross-reactive immunogenicity against multiple SARS-CoV-2 variants of concerns (VOCs). The incidence of adverse reactions was low in both booster vaccinations, and the overall safety profile of heterologous boost was quite similar to that of homologous boost. Heterologous NVSI-06-08 booster was immunogenically superior to homologous booster of BBIBP-CorV. Both Neutralizing and IgG antibodies elicited by NVSI-06-08 booster were significantly higher than by the booster of BBIBP-CorV against not only SARS-CoV-2 prototype strain but also multiple VOCs. Especially, the neutralizing activity induced by NVSI-06-08 booster against the immune-evasive Beta variant was no less than that against the prototype strain, and a considerable level of neutralizing antibodies against Omicron (GMT: 367.67; 95%CI, 295.50-457.47) was induced by heterologous booster, which was substantially higher than that boosted by BBIBP-CorV (GMT: 45.03; 95%CI, 36.37-55.74). Our findings showed that NVSI-06-08 was safe and immunogenic as a booster dose following two doses of BBIBP-CorV, which was immunogenically superior to homologous boost with another dose of BBIBP-CorV. Our study also indicated that the design of hybrid antigen may provide an effective strategy for broad-spectrum vaccine developments.

Preprint in English | bioRxiv | ID: ppbiorxiv-448958


The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 is an attractive target for COVID-19 vaccine developments, which naturally exists in a trimeric form. Here, guided by structural and computational analyses, we present a mutation-integrated trimeric form of RBD (mutI tri-RBD) as a broadly protective vaccine candidate, in which three RBDs were individually grafted from three different circulating SARS-CoV-2 strains including the prototype, Beta (B.1.351) and Kappa (B.1.617). The three RBDs were then connected end-to-end and co-assembled to possibly mimic the native trimeric arrangements in the natural S protein trimer. The recombinant expression of the mutI tri-RBD, as well as the homo-tri-RBD where the three RBDs were all truncated from the prototype strain, by mammalian cell exhibited correct folding, strong bio-activities, and high stability. The immunization of both the mutI tri-RBD and homo-tri-RBD plus aluminum adjuvant induced high levels of specific IgG and neutralizing antibodies against the SARS-CoV-2 prototype strain in mice. Notably, regarding to the "immune-escape" Beta (B.1.351) variant, mutI tri-RBD elicited significantly higher neutralizing antibody titers than homo-tri-RBD. Furthermore, due to harboring the immune-resistant mutations as well as the evolutionarily convergent hotspots, the designed mutI tri-RBD also induced strong broadly neutralizing activities against various SARS-CoV-2 variants, especially the variants partially resistant to homo-tri-RBD. Homo-tri-RBD has been approved by the China National Medical Products Administration to enter clinical trial (No. NCT04869592), and the superior broad neutralization performances against SARS-CoV-2 support the mutI tri-RBD as a more promising vaccine candidate for further clinical developments.