Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add filters

Year range
1.
mBio ; : e0337721, 2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1637923

ABSTRACT

Pathogenic coronaviruses are a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified small-molecule inhibitors that potently block the replication of severe acute respiratory syndrome virus 2 (SARS-CoV-2). Among them, JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with a 50% effective concentration of 695 nM, with a specificity index of greater than 1,000. JIB-04 showed in vitro antiviral activity in multiple cell types, including primary human bronchial epithelial cells, against several DNA and RNA viruses, including porcine coronavirus transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved weight gain and survival. These results highlight the potential utility of JIB-04 as an antiviral agent against SARS-CoV-2 and other viral pathogens. IMPORTANCE The coronavirus disease 2019 (COVID-19), the disease caused by SARS-CoV-2 infection, is an ongoing public health disaster worldwide. Although several vaccines are available as a preventive measure and the FDA approval of an orally bioavailable drug is on the horizon, there remains a need for developing antivirals against SARS-CoV-2 that could work on the early course of infection. By using infectious reporter viruses, we screened small-molecule inhibitors for antiviral activity against SARS-CoV-2. Among the top hits was JIB-04, a compound previously studied for its anticancer activity. Here, we showed that JIB-04 inhibits the replication of SARS-CoV-2 as well as different DNA and RNA viruses. Furthermore, JIB-04 conferred protection in a porcine model of coronavirus infection, although to a lesser extent when given as therapeutic rather than prophylactic doses. Our findings indicate a limited but still promising utility of JIB-04 as an antiviral agent in the combat against COVID-19 and potentially other viral diseases.

2.
J Tradit Chin Med ; 41(6): 982-984, 2021 12.
Article in English | MEDLINE | ID: covidwho-1614424

ABSTRACT

OBJECTIVE: To study the possible role of traditional Chinese medicine (TCM) of Huangqi (Radix Astragali Mongolici), Gancao (Radix Glycyrrhizae), Jinyinhua (Flos Lonicerae), and Lianqiao (Fructus Forsythiae Suspensae) in absorption of lung lesions in Corona Virus Disease 2019 (COVID-19) patients. METHODS: A cohort of COVID-19 cases was recruited. During hospitalization, chest computed tomographic (CT) scan and real time polymerase chain reaction (RT-PCR) test were performed every three days. Comparison was held (Western Medicine, WM vs WM plus TCM) on absorption of lung lesions, time interval from admission to negative test result of RT-PCR (ATN), and medical expense. Multivariate cox regression models were built to identify the possible prognostic factor of delayed absorption of lung lesion. RESULTS: The medical expenditure (1163 ± 379 vs 1137 ± 498, P = 0.863) and ATN (13 ± 4 vs 10 ± 4, P = 0.055) were comparable between cases treated with WM plus TCM and cases only received WM. Multivariate cox regression model showed that cases receiving extra TCM had lower risk of delayed absorption of lung lesions [Hazard ratio = 0.24, 95% confidence Interval (0.06, 0.96), P = 0.043]. CONCLUSION: Compared to WM, the treatment of WM plus TCM facilitates the recovery of pulmonary infiltration on COVID-19 cases without significantly increasing medical expense.


Subject(s)
COVID-19/drug therapy , Drugs, Chinese Herbal/therapeutic use , Lung/pathology , Adult , Astragalus propinquus , Female , Forsythia , Glycyrrhiza , Hospitalization , Humans , Lonicera , Lung/virology , Male , Medicine, Chinese Traditional , Middle Aged , Plant Extracts
3.
Asian J Surg ; 2021 Dec 21.
Article in English | MEDLINE | ID: covidwho-1588265
4.
Int J Hypertens ; 2021: 6594863, 2021.
Article in English | MEDLINE | ID: covidwho-1582879

ABSTRACT

Increasing evidence has shown an unusual relationship between hypertension and COVID-19, which may not be as simple as previously thought. The purpose of our study was to determine the association of hypertension with the onset and development of COVID-19. A meta-analysis was performed to summarize the prevalence of hypertension in COVID-19 patients, as well as the usage of ACEIs/ARBs. Metaregression analyses were used to evaluate the association of hypertension with disease severity and mortality. PubMed and Google Scholar were searched for relevant studies. A total of 42 studies including 14138 patients were enrolled in the study. The proportion of hypertension in COVID-19 patients in China was 17.7% according to the enrolled studies, while it was 6.0% in a study containing 72314 confirmed cases, which are both much lower than in the general population. All of the data from the 11 provinces in China showed the same tendency. The proportions of hypertension were higher in severe/ICU patients and nonsurvivors than in nonsevere/ICU patients and survivors. The metaregression analyses suggested that both disease severity and risk of death were associated with the incidence of hypertension. A total of 27.6% of COVID-19 patients with hypertension received ACEI/ARB therapy. The proportion of deaths in COVID-19 patients with hypertension treated with ACEIs/ARBs was significantly lower than that in nonuse patients treated with ACEIs/ARBs. In conclusion, hypertension may reduce the infection risk of COVID-19 but increase the risk of developing worse clinical outcomes. The use of ACEIs/ARBs may benefit COVID-19 patients with hypertension.

5.
J Nanobiotechnology ; 19(1): 391, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1538075

ABSTRACT

BACKGROUND: Considering the threat of the COVID-19 pandemic, caused by SARS-CoV-2, there is an urgent need to develop effective treatments. At present, neutralizing antibodies and small-molecule drugs such as remdesivir, the most promising compound to treat this infection, have attracted considerable attention. However, some potential problems need to be concerned including viral resistance to antibody-mediated neutralization caused by selective pressure from a single antibody treatment, the unexpected antibody-dependent enhancement (ADE) effect, and the toxic effect of small-molecule drugs. RESULTS: Here, we constructed a type of programmed nanovesicle (NV) derived from bispecific CAR-T cells that express two single-chain fragment variables (scFv), named CR3022 and B38, to target SARS-CoV-2. Nanovesicles that express both CR3022 and B38 (CR3022/B38 NVs) have a stronger ability to neutralize Spike-pseudovirus infectivity than nanovesicles that express either CR3022 or B38 alone. Notably, the co-expression of CR3022 and B38, which target different epitopes of spike protein, could reduce the incidence of viral resistance. Moreover, the lack of Fc fragments on the surface of CR3022/B38 NVs could prevent ADE effects. Furthermore, the specific binding ability to SARS-CoV-2 spike protein and the drug loading capacity of CR3022/B38 NVs can facilitate targeted delivery of remdesiver to 293 T cells overexpressing spike protein. These results suggest that CR3022/B38 NVs have the potential ability to target antiviral drugs to the main site of viral infection, thereby enhancing the antiviral ability by inhibiting intracellular viral replication and reducing adverse drug reactions. CONCLUSIONS: In summary, we demonstrate that nanovesicles derived from CAR-T cells targeting the spike protein of SARS-COV-2 have the ability to neutralize Spike-pseudotyped virus and target antiviral drugs. This novel therapeutic approach may help to solve the dilemma faced by neutralizing antibodies and small-molecule drugs in the treatment of COVID-19.

6.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1528156

ABSTRACT

The low capture rate of expressed RNAs from single-cell sequencing technology is one of the major obstacles to downstream functional genomics analyses. Recently, a number of imputation methods have emerged for single-cell transcriptome data, however, recovering missing values in very sparse expression matrices remains a substantial challenge. Here, we propose a new algorithm, WEDGE (WEighted Decomposition of Gene Expression), to impute gene expression matrices by using a biased low-rank matrix decomposition method. WEDGE successfully recovered expression matrices, reproduced the cell-wise and gene-wise correlations and improved the clustering of cells, performing impressively for applications with sparse datasets. Overall, this study shows a potent approach for imputing sparse expression matrix data, and our WEDGE algorithm should help many researchers to more profitably explore the biological meanings embedded in their single-cell RNA sequencing datasets. The source code of WEDGE has been released at https://github.com/QuKunLab/WEDGE.


Subject(s)
Algorithms , Computational Biology/methods , Gene Expression Profiling/methods , RNA-Seq/methods , Single-Cell Analysis/methods , COVID-19/blood , COVID-19/genetics , COVID-19/virology , Cluster Analysis , Computer Simulation , Genomics/methods , Humans , Leukocytes, Mononuclear/classification , Leukocytes, Mononuclear/metabolism , Reproducibility of Results , SARS-CoV-2/physiology , Severity of Illness Index
7.
Front Pharmacol ; 12: 722126, 2021.
Article in English | MEDLINE | ID: covidwho-1515540

ABSTRACT

Background and Aims: Qingfei Paidu decoction (QPD) and Xuanfei Baidu decoction (XBD) are two typical traditional Chinese medicines with proven efficacy for the treatment of SARS-CoV-2, although the underlying mechanism is not well defined. Blunted immune response and enhanced production of pro-inflammatory cytokines (cytokine storm) are two main features observed in patients infected with SARS-CoV-2. Analysis based on network pharmacology has revealed that both QPD and XBD played an important role in the regulation of host immunity. We therefore investigated the role of QPD and XBD in the modulation of innate immunity in vitro, focusing on the type 1 interferon (IFN) signaling pathway in A549 cells and pro-inflammatory cytokine production in macrophages. Methods: A549 cells were treated with QPD or XBD and the production of endogenous IFNα and IFNß as well as the expression levels of some interferon-stimulated genes (ISGs) were detected by reverse transcriptase-quantitative PCR (RT-qPCR). Macrophages derived from THP-1 cells were treated with QPD or XBD and their pro-inflammatory cytokine expression levels were measured by RT-qPCR, 6 h post LPS stimulation. In addition, the expression levels of some pro-inflammatory cytokines were further analyzed by ELISA. The effect of QPD and XBD on the NF-κB signaling pathway and the pinocytosis activity of THP-1-derived macrophages were evaluated by Western blot and neutral red uptake assay, respectively. Results: Although QPD and XBD showed very little effect on the type 1 IFN signaling pathway in A549 cells, either QPD or XBD markedly inhibited the production of pro-inflammatory markers including interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and chemokine ligand 10 in THP-1-derived M1 macrophages. In addition, the phosphorylation of IκBα and NF-κB p65 during the process of macrophage polarization was significantly suppressed following QPD or XBD treatment. QPD and XBD also suppressed the pinocytosis activity of macrophages. Conclusion: QPD and XBD have been shown to have robust anti-inflammatory activities in vitro. Our study demonstrated that both QPD and XBD decreased pro-inflammatory cytokine expression, inhibited the activation of the NF-κB signaling pathway, and blunted pinocytosis activity in THP-1-derived macrophages.

8.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750632

ABSTRACT

Background: A recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), which began in Wuhan, China, with a high level of human-to-human transmission has been reported. There are limited data available on Coronavirus Disease 2019 (COVID-19) patients with hematological malignancies with more than 60 days of follow-up. This study describes the clinical characteristics, including multiple recurrences of COVID-19, in a patient with chronic lymphocytic leukemia (CLL) during 69 days of follow-up. Case Presentation: A 72-year-old female was admitted to hospital isolation after being infected with COVID-19 as part of a family cluster on January 30, 2020. Apart from SARS-Cov-2 virus infection, laboratory results revealed lymphocytosis of uncertain etiology and abnormal distribution of T lymphocytes. On blood smears, small blue lymphocytes with scant cytoplasm were observed, and the presence of high levels of circulating clonal B cells was also demonstrated by flow cytometry. The patient was diagnosed with COVID-19 and CLL. Among her family members, she had the highest viral loads and the fastest progression on lung injury and developed severe pneumonia. Serological results showed she had both 2019-nCoV-specific IgM and IgG antibodies;however, only IgG antibodies were detected in her husband's plasma. Results: A combination regimen of antiviral therapy and high-dose intravenous immunoglobulin (IVIG) in the early stage seemed to be effective for treating CLL and SARS-Cov-2 infection. Because of the low humoral immune response, the CLL patient could not effectively clear the SARS-Cov-2 infection and suffered from recurrence twice during the 69-day follow-up. Conclusion: In CLL, a neoplastic antigen-specific B-cell clone proliferates, and the progeny cells accumulate and outgrow other B cells, leading to immune deficiency. Considering the low humoral immune response and ineffective clearance of SARS-Cov-2 in CLL patients, the follow-up and home quarantine period should be extended. We need further studies to clarify suspending or continuing CLL therapy during COVID infection. For those patients who are prone to progression to severe disease, administering humoral immunity therapies can help to prevent disease progression and quickly meet the cure criteria.

9.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: covidwho-1477961

ABSTRACT

Chronic diseases and viral infections have threatened human life over the ages and constitute the main reason for increasing death globally. The rising burden of these diseases extends to negatively affecting the economy and trading globally, as well as daily life, which requires inexpensive, novel, and safe therapeutics. Therefore, scientists have paid close attention to probiotics as safe remedies to combat these morbidities owing to their health benefits and biotherapeutic effects. Probiotics have been broadly adopted as functional foods, nutraceuticals, and food supplements to improve human health and prevent some morbidity. Intriguingly, recent research indicates that probiotics are a promising solution for treating and prophylactic against certain dangerous diseases. Probiotics could also be associated with their essential role in animating the immune system to fight COVID-19 infection. This comprehensive review concentrates on the newest literature on probiotics and their metabolism in treating life-threatening diseases, including immune disorders, pathogens, inflammatory and allergic diseases, cancer, cardiovascular disease, gastrointestinal dysfunctions, and COVID-19 infection. The recent information in this report will particularly furnish a platform for emerging novel probiotics-based therapeutics as cheap and safe, encouraging researchers and stakeholders to develop innovative treatments based on probiotics to prevent and treat chronic and viral diseases.


Subject(s)
Chronic Disease/therapy , Probiotics/administration & dosage , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/therapy , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Humans , Immune System/metabolism , Inflammation/metabolism , Inflammation/pathology , Neoplasms/metabolism , Neoplasms/therapy , Virus Diseases/immunology , Virus Diseases/metabolism , Virus Diseases/therapy
10.
Front Cell Infect Microbiol ; 11: 712530, 2021.
Article in English | MEDLINE | ID: covidwho-1477806

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) pandemic has spread worldwide. However, the impact of baseline lipid profile on clinical endpoints in COVID-19 and the potential effect of COVID-19 on lipid profile remain unclear. Methods: In this retrospective cohort study, we consecutively enrolled 430 adult COVID-19 patients from two Chinese hospitals (one each in Chengdu and Wuhan). The lipid profile before admission and during the disease course and the clinical endpoint including in-hospital death or oropharyngeal swab test positive again (OSTPA) after discharge were collected. We used Kaplan-Meier and Cox regression to explore the lipid risk factors before admission associated with endpoints. Then, we assessed the lipid level change along with the disease course to determine the relationship between pathology alteration and the lipid change. Results: In the Chengdu cohort, multivariable Cox regression showed that low-density lipoprotein cholesterol (LDL-C) dyslipidemia before admission was associated with OSTPA after discharge for COVID-19 patients (RR: 2.51, 95% CI: 1.19, 5.29, p = 0.006). In the Wuhan cohort, the patients with triglyceride (TG) dyslipidemia had an increased risk of in-hospital death (RR: 1.92, 95% CI: 1.08, 3.60, p = 0.016). In addition, in both cohorts, the lipid levels gradually decreased in the in-hospital death or OSTPA subgroups since admission. On admission, we also noticed the relationship between the biomarkers of inflammation and the organ function measures and this lipid level in both cohorts. For example, after adjusting for age, sex, comorbidities, smoking, and drinking status, the C-reactive protein level was negatively associated with the TC lipid level [ß (SE) = -0.646 (0.219), p = 0.005]. However, an increased level of alanine aminotransferase, which indicates impaired hepatic function, was positively associated with total cholesterol (TC) lipid levels in the Chengdu cohort [ß (SE) = 0.633 (0.229), p = 0.007]. Conclusions: The baseline dyslipidemia should be considered as a risk factor for poor prognosis of COVID-19. However, lipid levels may be altered during the COVID-19 course, since lipidology may be distinctly affected by both inflammation and organic damage for SARS-CoV-2.


Subject(s)
COVID-19 , Adult , Hospital Mortality , Humans , Lipids , Retrospective Studies , Risk Factors , SARS-CoV-2
11.
Front Med (Lausanne) ; 8: 696976, 2021.
Article in English | MEDLINE | ID: covidwho-1450816

ABSTRACT

Background: Previous research suggested that Chinese Medicine (CM) Formula Huashibaidu granule might shorten the disease course in coronavirus disease 2019 (COVID-19) patients. This research aimed to investigate the early treatment effect of Huashibaidu granule in well-managed patients with mild COVID-19. Methods: An unblinded cluster-randomized clinical trial was conducted at the Dongxihu FangCang hospital. Two cabins were randomly allocated to a CM or control group, with 204 mild COVID-19 participants in each cabin. All participants received conventional treatment over a 7 day period, while the ones in CM group were additionally given Huashibaidu granule 10 g twice daily. Participants were followed up to their clinical endpoint. The primary outcome was worsening symptoms before the clinical endpoint. The secondary outcomes were cure and discharge before the clinical endpoint and alleviation of composite symptoms after the 7 days of treatment. Results: All 408 participants were followed up to their clinical endpoint and included in statistical analysis. Baseline characteristics were comparable between the two groups (P > 0.05). The number of worsening patients in the CM group was 5 (2.5%), and that in the control group was 16 (7.8%) with a significant difference between groups (P = 0.014). Eight foreseeable mild adverse events occurred without statistical difference between groups (P = 0.151). Conclusion: Seven days of early treatment with Huashibaidu granule reduced the likelihood of worsening symptoms in patients with mild COVID-19. Our study supports Huashibaidu granule as an active option for early treatment of mild COVID-19 in similar well-managed medical environments. Clinical Trial Registration:www.chictr.org.cn/showproj.aspx?proj=49408, identifier: ChiCTR2000029763.

12.
Cell Discov ; 7(1): 89, 2021 Sep 28.
Article in English | MEDLINE | ID: covidwho-1440469

ABSTRACT

SARS-CoV-2 outbreak has been declared by World Health Organization as a worldwide pandemic. However, there are many unknowns about the antigen-specific T-cell-mediated immune responses to SARS-CoV-2 infection. Here, we present both single-cell TCR-seq and RNA-seq to analyze the dynamics of TCR repertoire and immune metabolic functions of blood T cells collected from recently discharged COVID-19 patients. We found that while the diversity of TCR repertoire was increased in discharged patients, it returned to basal level ~1 week after becoming virus-free. The dynamics of T cell repertoire correlated with a profound shift of gene signatures from antiviral response to metabolism adaptation. We also demonstrated that the top expanded T cell clones (~10% of total T cells) display the key anti-viral features in CD8+ T cells, confirming a critical role of antigen-specific T cells in fighting against SARS-CoV-2. Our work provides a basis for further analysis of adaptive immunity in COVID-19 patients, and also has implications in developing a T-cell-based vaccine for SARS-CoV-2.

13.
Front Immunol ; 11: 624411, 2020.
Article in English | MEDLINE | ID: covidwho-1389173

ABSTRACT

SARS-CoV-2 is wreaking havoc around the world. To get the world back on track, hundreds of vaccines are under development. A deeper understanding of how the immune system responds to SARS-CoV-2 re-infection will certainly help. Studies have highlighted various aspects of T cell response in resolving acute infection and preventing re-infections. Lung resident memory T (TRM) cells are sentinels in the secondary immune response. They are mostly differentiated from effector T cells, construct specific niches and stay permanently in lung tissues. If the infection recurs, locally activated lung TRM cells can elicit rapid immune response against invading pathogens. In addition, they can significantly limit tumor growth or lead to pathologic immune responses. Vaccines targeting TRM cells are under development, with the hope to induce stable and highly reactive lung TRM cells through mucosal administration or "prime-and-pull" strategy. In this review, we will summarize recent advances in lung TRM cell generation and maintenance, explore their roles in different diseases and discuss how these cells may guide the development of future vaccines targeting infectious disease, cancer, and pathologic immune response.


Subject(s)
COVID-19/immunology , Immunotherapy, Adoptive/methods , Lung/immunology , Neoplasms/immunology , SARS-CoV-2/physiology , T-Lymphocytes/immunology , Vaccines/immunology , Animals , Humans , Immunologic Memory , Lymphocyte Activation , T-Lymphocytes/transplantation
14.
J Proteomics ; 248: 104354, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1364279

ABSTRACT

Porcine rotavirus (PoRV), particularly group A, is one of the most important swine pathogens, causing substantial economic losses in the animal husbandry industry. To improve understanding of host responses to PoRV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantitatively identify the differentially expressed proteins in PoRV-infected IPEC-J2 cells and confirmed the differentially accumulated proteins (DAPs) expression differences by performing RT-qPCR and Western blot analysis. Herein, in PoRV- and mock-infected IPEC-J2 cells, relative quantitative data were identified for 4724 proteins, 223 of which were DAPs (125 up-accumulated and 98 down-accumulated). Bioinformatics analyses further revealed that a majority of the DAPs are involved in numerous crucial biological processes and signaling pathways, such as metabolic process, immune system process, amino acid metabolism, energy metabolism, immune system, MHC class I peptide loading complex, Hippo signaling pathway, Th1 and Th2 cell differentiation, antigen processing and presentation, and tubule bicarbonate reclamation. The cellular localization prediction analysis indicated that these DAPs may be located in the Golgi apparatus, nucleus, peroxisomal, cytoplasm, mitochondria, extracellular, plasma membrane, and endoplasmic reticulum (ER). Expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) or two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, were further validated by RT-qPCR and Western blot analysis. Collectively, this work is the first time to investigate the protein profile of PoRV-infected IPEC-J2 cells using quantitative proteomics; these findings provide valuable information to better understand the mechanisms underlying the host responses to PoRV infection in piglets. SIGNIFICANCE: The proteomics analysis of this study uncovered the target associated with PoRV-induced innate immune response or cellular damage, and provided relevant insights into the molecular functions, biological processes, and signaling pathway in these targets. Out of these 223 DAPs, the expression levels of three up-accumulated (VAMP4, IKBKE, and TJP3) and two down-accumulated (SOD3 and DHX9) DAPs upon PoRV infection, have been further validated using RT-qPCR and Western blot analysis. These outcomes could uncover how PoRV manipulated the cellular machinery, which could further our understanding of PoRV pathogenesis in piglets.


Subject(s)
Proteome , Rotavirus , Animals , Cell Line , Chromatography, Liquid , Epithelial Cells , Swine , Tandem Mass Spectrometry
15.
Geo-spatial Information Science ; : 1-23, 2021.
Article in English | Taylor & Francis | ID: covidwho-1347993
16.
World J Gastroenterol ; 27(27): 4358-4370, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1328147

ABSTRACT

Since it was first reported in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly around the world to cause the ongoing pandemic. Although the clinical manifestations of SARS-CoV-2 infection are predominantly in the respiratory system, liver enzyme abnormalities exist in around half of the cases, which indicate liver injury, and raise clinical concern. At present, there is no consensus whether the liver injury is directly caused by viral replication in the liver tissue or indirectly by the systemic inflammatory response. This review aims to summarize the clinical manifestations and to explore the underlying mechanisms of liver dysfunction in patients with SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Liver , Pandemics , Virus Replication
17.
ACS Nano ; 2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1327187

ABSTRACT

Personal protective equipment (PPE) is vital for the prevention and control of SARS-CoV-2. However, conventional PPEs lack virucidal capabilities and arbitrarily discarding used PPEs may cause a high risk for cross-contamination and environmental pollution. Recently reported photothermal or photodynamic-mediated self-sterilizing masks show bactericidal-virucidal abilities but have some inherent disadvantages, such as generating unbearable heat during the photothermal process or requiring additional ultraviolet light irradiation to inactivate pathogens, which limit their practical applications. Here, we report the fabrication of a series of fabrics (derived from various PPEs) with real-time self-antiviral capabilities, on the basis of a highly efficient aggregation-induced emission photosensitizer (namely, ASCP-TPA). ASCP-TPA possesses facile synthesis, excellent biocompatibility, and extremely high reactive oxygen species generation capacity, which significantly outperforms the traditional photosensitizers. Meanwhile, the ASCP-TPA-attached fabrics (ATaFs) show tremendous photodynamic inactivation effects against MHV-A59, a surrogate coronavirus of SARS-CoV-2. Upon ultralow-power white light irradiation (3.0 mW cm-2), >99.999% virions (5 log) on the ATaFs are eliminated within 10 min. Such ultralow-power requirement and rapid virus-killing ability enable ATaFs-based PPEs to provide real-time protection for the wearers under indoor light irradiation. ATaFs' virucidal abilities are retained after 100 washings or continuous exposure to office light for 2 weeks, which offers the benefits of reusability and long-term usability. Furthermore, ATaFs show no toxicity to normal skin, even upon continuous high-power light illumination. This self-antiviral ATaFs-based strategy may also be applied to fight against other airborne pathogens and holds huge potential to alleviate global PPE supply shortages.

18.
Chinese Journal of Information on Traditional Chinese Medicine ; 27(8):1-7, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-1319774

ABSTRACT

Since December 2019, a number of cases of pneumonia with unexplained reasons have been reported in Wuhan, Hubei Province, and a large number of cases have been infected. National Health Commission of the People's Republic of China has named it novel coronavirus pneumonia (COVID-19). With the strengthening of prevention and control forces, the number of mild patients in mobile cabin hospital has increased and a large number of patients have been cured and discharged from the hospital. The rehabilitation program of integrated traditional Chinese and Western medicine needs to be formulated and implemented urgently. Therefore, according to treatment protocols issued by National Health Commission of the People's Republic of China and relevant institutes, and widely discussion of relevant experts of pulmonary rehabilitation, TCM and nutrition, Respiratory Rehabilitation Program (Draft) of Integrated Traditional Chinese and Western Medicine for COVID-19 was compiled, in order to play a positive role in the follow-up epidemic prevention and control.

19.
Adv Mater ; 33(34): e2101707, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1316189

ABSTRACT

The transfer of foreign synthetic messenger RNA (mRNA) into cells is essential for mRNA-based protein-replacement therapies. Prophylactic mRNA COVID-19 vaccines commonly utilize nanotechnology to deliver mRNA encoding SARS-CoV-2 vaccine antigens, thereby triggering the body's immune response and preventing infections. In this study, a new combinatorial library of symmetric lipid-like compounds is constructed, and among which a lead compound is selected to prepare lipid-like nanoassemblies (LLNs) for intracellular delivery of mRNA. After multiround optimization, the mRNA formulated into core-shell-structured LLNs exhibits more than three orders of magnitude higher resistance to serum than the unprotected mRNA, and leads to sustained and high-level protein expression in mammalian cells. A single intravenous injection of LLNs into mice achieves over 95% mRNA translation in the spleen, without causing significant hematological and histological changes. Delivery of in-vitro-transcribed mRNA that encodes high-affinity truncated ACE2 variants (tACE2v mRNA) through LLNs induces elevated expression and secretion of tACE2v decoys, which is able to effectively block the binding of the receptor-binding domain of the SARS-CoV-2 to the human ACE2 receptor. The robust neutralization activity in vitro suggests that intracellular delivery of mRNA encoding ACE2 receptor mimics via LLNs may represent a potential intervention strategy for COVID-19.


Subject(s)
COVID-19 Vaccines/genetics , Galactosidases/chemistry , Nanoparticles/chemistry , Phosphatidylethanolamines/chemistry , RNA, Messenger/chemistry , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/metabolism , Cell Membrane Permeability , Cell Survival/drug effects , Female , Galactosidases/metabolism , Gene Expression Regulation , Gene Transfer Techniques , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Phosphatidylethanolamines/metabolism , Protein Binding , RNA, Messenger/genetics
20.
Phytomedicine ; 91: 153671, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1313371

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of Hua Shi Bai Du Granule (Q-14) plus standard care compared with standard care alone in adults with coronavirus disease (COVID-19). STUDY DESIGN: A single-center, open-label, randomized controlled trial. SETTING: Wuhan Jinyintan Hospital, Wuhan, China, February 27 to March 27, 2020. PARTICIPANTS: A total of 204 patients with laboratory-confirmed COVID-19 were randomized into the treatment group and control group, consisting of 102 patients in each group. INTERVENTIONS: In the treatment group, Q-14 was administered at 10 g (granules) twice daily for 14 days, plus standard care. In the control group, patients were provided standard care alone for 14 days. MAIN OUTCOME MEASURE: The primary outcome was the conversion time for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral assay. Adverse events were analyzed in the safety population. RESULTS: Among the 204 patients, 195 were analyzed according to the intention-to-treat principle. A total of 149 patients (71 vs. 78 in the treatment and control groups, respectively) tested negative via the SARS-CoV-2 viral assay. There was no statistical significance in the conversion time between the treatment group and control group (Full analysis set: Median [interquartile range]: 10.00 [9.00-11.00] vs. 10.00 [9.00-11.00]; Mean rank: 67.92 vs. 81.44; P = 0.051). The recovery time for fever was shorter in the treatment group than in the control group. The disappearance rate of symptoms like cough, fatigue, and chest discomfort was significantly higher in the treatment group. In chest computed tomography (CT) examinations, the overall evaluation of chest CT examination after treatment compared with baseline showed that more patients improved in the treatment group. There were no significant differences in the other outcomes. CONCLUSION: The combination of Q-14 and standard care for COVID-19 was useful for the improvement of symptoms (such as fever, cough, fatigue, and chest discomfort), but did not result in a significantly higher probability of negative conversion in the SARS-CoV-2 viral assay. No serious adverse events were observed. TRIAL REGISTRATION: ChiCTR2000030288.


Subject(s)
COVID-19 , Drugs, Chinese Herbal/therapeutic use , COVID-19/therapy , China , Female , Humans , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...