Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Signal Transduct Target Ther ; 8(1): 53, 2023 02 03.
Article in English | MEDLINE | ID: covidwho-2232506

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a severe global health crisis; its structural protein envelope (E) is critical for viral entry, budding, production, and induction of pathology which makes it a potential target for therapeutics against COVID-19. Here, we find that the E3 ligase RNF5 interacts with and catalyzes ubiquitination of E on the 63rd lysine, leading to its degradation by the ubiquitin-proteasome system (UPS). Importantly, RNF5-induced degradation of E inhibits SARS-CoV-2 replication and the RNF5 pharmacological activator Analog-1 alleviates disease development in a mouse infection model. We also found that RNF5 is distinctively expressed in different age groups and in patients displaying different disease severity, which may be exploited as a prognostic marker for COVID-19. Furthermore, RNF5 recognized the E protein from various SARS-CoV-2 strains and SARS-CoV, suggesting that targeting RNF5 is a broad-spectrum antiviral strategy. Our findings provide novel insights into the role of UPS in antagonizing SARS-CoV-2 replication, which opens new avenues for therapeutic intervention to combat the COVID-19 pandemic.


Subject(s)
COVID-19 , Ubiquitin-Protein Ligases , Animals , Mice , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , SARS-CoV-2/metabolism , COVID-19/genetics , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Ubiquitin/metabolism , DNA-Binding Proteins/metabolism , Membrane Proteins
2.
J Med Virol ; 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2232486

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains a serious global threat. The metabolic analysis had been successfully applied in the efforts to uncover the pathological mechanisms and biomarkers of disease severity. Here we performed a quasi-targeted metabolomic analysis on 56 COVID-19 patients from Sierra Leone in western Africa, revealing the metabolomic profiles and the association with disease severity, which was confirmed by the targeted metabolomic analysis of 19 pairs of COVID-19 patients. A meta-analysis was performed on published metabolic data of COVID-19 to verify our findings. Of the 596 identified metabolites, 58 showed significant differences between severe and nonsevere groups. The pathway enrichment of these differential metabolites revealed glutamine and glutamate metabolism as the most significant metabolic pathway (Impact = 0.5; -log10P = 1.959). Further targeted metabolic analysis revealed six metabolites with significant intergroup differences, with glutamine/glutamate ratio significantly associated with severe disease, negatively correlated with 10 clinical parameters and positively correlated with SPO2 (rs = 0.442, p = 0.005). Mini meta-analysis indicated elevated glutamate was related to increased risk of COVID-19 infection (pooled odd ratio [OR] = 2.02; 95% confidence interval [CI]: 1.17-3.50) and severe COVID-19 (pooled OR = 2.28; 95% CI: 1.14-4.56). In contrast, elevated glutamine related to decreased risk of infection and severe COVID-19, the pooled OR were 0.30 (95% CI: 0.20-0.44), and 0.44 (95% CI: 0.19-0.98), respectively. Glutamine and glutamate metabolism are associated with COVID-19 severity in multiple populations, which might confer potential therapeutic target of COVID-19, especially for severe patients.

5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2110127

ABSTRACT

The pandemic of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed great threat to the world in many aspects. There is an urgent requirement for an effective preventive vaccine. The receptor binding domain (RBD), located on the spike (S) gene, is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor of host cells. The RBD protein is an effective and safe antigen candidate. The six-helix bundle (6HB) "molecular clamp" is a novel thermally-stable trimerization domain derived from a human immunodeficiency virus (HIV) gp41 protein segment. We selected the baculovirus system to fuse and express the RBD protein and 6HB for imitating the natural trimeric structure of RBD, named RBD-6HB. Recombinant RBD-6HB was successfully obtained from the cell culture supernatant and purified to high homogeneity. The purity of the final protein preparation was more than 97%. The results showed that the protein was identified as a homogeneous polymer. Further studies showed that the RBD-6HB protein combined with AL/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges. Our findings highlight the importance of trimerized SARS-CoV-2 S protein RBD in designing SARS-CoV-2 vaccines and provide a rationale for developing a protective vaccine through the induction of antibodies against the RBD domain.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Mice , Animals , COVID-19 Vaccines , Mice, Inbred BALB C , SARS-CoV-2 , COVID-19/prevention & control , Antibodies
6.
BMC Med Genomics ; 15(Suppl 2): 94, 2022 04 23.
Article in English | MEDLINE | ID: covidwho-2089198

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are a class of small non-coding RNA that can downregulate their targets by selectively binding to the 3' untranslated region (3'UTR) of most messenger RNAs (mRNAs) in the human genome. MiRNAs can interact with other molecules such as viruses and act as a mediator for viral infection. In this study, we examined whether, and to what extent, the SARS-CoV-2 virus can serve as a "sponge" for human miRNAs. RESULTS: We identified multiple potential miRNA/target pairs that may be disrupted during SARS-CoV-2 infection. Using miRNA expression profiles and RNA-seq from published studies, we further identified a highly confident list of 5 miRNA/target pairs that could be disrupted by the virus's miRNA sponge effect, namely hsa-miR-374a-5p/APOL6, hsa-let-7f-1-3p/EIF4A2, hsa-miR-374a-3p/PARP11, hsa-miR-548d-3p/PSMA2 and hsa-miR-23b-3p/ZNFX1 pairs. Using single-cell RNA-sequencing based data, we identified two important miRNAs, hsa-miR-302c-5p and hsa-miR-16-5p, to be potential virus targeting miRNAs across multiple cell types from bronchoalveolar lavage fluid samples. We further validated some of our findings using miRNA and gene enrichment analyses and the results confirmed with findings from previous studies that some of these identified miRNA/target pairs are involved in ACE2 receptor network, regulating pro-inflammatory cytokines and in immune cell maturation and differentiation. CONCLUSION: Using publicly available databases and patient-related expression data, we found that acting as a "miRNA sponge" could be one explanation for SARS-CoV-2-mediated pathophysiological changes. This study provides a novel way of utilizing SARS-CoV-2 related data, with bioinformatics approaches, to help us better understand the etiology of the disease and its differential manifestation across individuals.


Subject(s)
COVID-19 , MicroRNAs , SARS-CoV-2 , 3' Untranslated Regions , COVID-19/genetics , Computational Biology/methods , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
7.
Biosensors (Basel) ; 12(10)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2081892

ABSTRACT

The focus of this study was to investigate the detection of neutralizing antibodies (Nabs) in maternal serum and cord blood as the targeted samples by employing a lateral flow immunoassay combined with a spectrum reader (LFI-SR) and the correlation of Nab protection against different types of SARS-CoV-2. We enrolled 20 pregnant women who were vaccinated with the Moderna (mRNA-1273) vaccine during pregnancy and collected 40 samples during delivery. We used an LFI-SR for the level of spike protein receptor binding domain antibody (SRBD IgG) as Nabs and examined the correlation of the SRBD IgG concentration and Nab inhibition rates (NabIR) via enzyme-linked immunosorbent assays (ELISA). The LFI-SR had high confidence for the SRBD IgG level (p < 0.0001). Better NabIR were found in wild-type SARS-CoV-2 (WT) compared to Delta-type (DT) and Omicron-type (OT). Women with two-dose vaccinations demonstrated greater NabIR than those with a single dose. The cut-off value of the SRBD IgG level by the LFI-SR for NabIR to DT (≥30%; ≥70%) was 60.15 and 150.21 ng/mL for mothers (both p = 0.005), and 156.31 (p = 0.011) and 230.20 ng/mL (p = 0.006) for babies, respectively. An additional vaccine booster may be considered for those mothers with SRBD IgG levels < 60.15 ng/mL, and close protection should be given for those neonates with SRBD IgG levels < 150.21 ng/mL, since there is no available vaccine for them.


Subject(s)
COVID-19 , SARS-CoV-2 , Pregnancy , Infant, Newborn , Humans , Female , Spike Glycoprotein, Coronavirus , Pregnant Women , Antibodies, Viral , Immunoglobulin G , COVID-19/diagnosis , Immunoassay , Antibodies, Neutralizing
8.
Front Cell Infect Microbiol ; 12: 967493, 2022.
Article in English | MEDLINE | ID: covidwho-2029957

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has posed a constant threat to human beings and the world economy for more than two years. Vaccination is the first choice to control and prevent the pandemic. However, an effective SARS-CoV-2 vaccine against the virus infection is still needed. This study designed and prepared four kinds of virus-like particles (VLPs) using an insect expression system. Two constructs encoded wild-type SARS-CoV-2 spike (S) fused with or without H5N1 matrix 1 (M1) (S and SM). The other two constructs contained a codon-optimized spike gene and/or M1 gene (mS and mSM) based on protein expression, stability, and ADE avoidance. The results showed that the VLP-based vaccine could induce high SARS-CoV-2 specific antibodies in mice, including specific IgG, IgG1, and IgG2a. Moreover, the mSM group has the most robust ability to stimulate humoral immunity and cellular immunity than the other VLPs, suggesting the mSM is the best immunogen. Further studies showed that the mSM combined with Al/CpG adjuvant could stimulate animals to produce sustained high-level antibodies and establish an effective protective barrier to protect mice from challenges with mouse-adapted strain. The vaccine based on mSM and Al/CpG adjuvant is a promising candidate vaccine to prevent the COVID-19 pandemic.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Viral Vaccines , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Immunoglobulin G , Mice , Mice, Inbred BALB C , Pandemics/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: covidwho-2006040

ABSTRACT

Type III and type I interferon have similar mechanisms of action, and their different receptors lead to different distributions in tissue. On mucosal surfaces, type III interferon exhibits strong antiviral activity. Porcine epidemic diarrhea virus (PEDV) is an economically important enteropathogenic coronavirus, which can cause a high incidence rate and mortality in piglets. Here, we demonstrate that porcine interferon lambda 1 (pIFNL1) and porcine interferon lambda 3 (pIFNL3) can inhibit the proliferation of vesicular stomatitis virus with an enhanced green fluorescent protein (VSV-EGFP) in different cells, and also show strong antiviral activity when PEDV infects Vero cells. Both forms of pIFNLs were shown to be better than porcine interferon alpha (pIFNα), the antiviral activity of pIFNL1 is lower than that of pIFNL3. Therefore, our results provide experimental evidence for the inhibition of PEDV infection by pIFNLs, which may provide a promising treatment for the prevention and treatment of Porcine epidemic diarrhea (PED) in piglets.


Subject(s)
Interferon Type I , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Chlorocebus aethiops , Interferon Type I/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Vero Cells
10.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: covidwho-1964115

ABSTRACT

Swine enteric viruses are a major cause of piglet diarrhea, causing a devastating impact on the pork industry. To further understand the molecular epidemiology and evolutionary diversity of swine enteric viruses, we carried out a molecular epidemiological investigation of swine enteric viruses (PEDV, PDCoV, PoRVA, and TGEV) on 7107 samples collected from pig farms in south-central China. The results demonstrated that PEDV is the predominant pathogen causing piglet diarrhea, and its infection occurs mainly in relatively cold winter and spring in Hunan and Hubei provinces. The positive rate of PEDV showed an abnormal increase from 2020 to 2021, and that of PoRVA and PDCoV exhibited gradual increases from 2018 to 2021. PEDV-PoRVA and PEDV-PDCoV were the dominant co-infection modes. A genetic evolution analysis based on the PEDV S1 gene and ORF3 gene revealed that the PEDV GII-a is currently epidemic genotype, and the ORF3 gene of DY2020 belongs to a different clade relative to other GII-a strains isolated in this study. Overall, our results indicated that the variant PEDV GII-a is the main pathogen of piglet diarrhea with a trend of outbreak. G9 is the dominant PoRVA genotype and has the possibility of outbreak as well. It is therefore critical to strengthen the surveillance of PEDV and PoRVA, and to provide technical reserves for the prevention and control of piglet diarrhea.


Subject(s)
Coronavirus Infections , Enteroviruses, Porcine , Porcine epidemic diarrhea virus , Swine Diseases , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , Phylogeny , Swine , Swine Diseases/epidemiology
11.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1947760

ABSTRACT

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Host-Pathogen Interactions , Molecular Targeted Therapy , Protein Processing, Post-Translational , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , COVID-19/virology , Caco-2 Cells , Exoribonucleases/metabolism , Host-Pathogen Interactions/drug effects , Humans , Protein Processing, Post-Translational/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sirtuins/metabolism , Succinates/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
12.
Front Immunol ; 13: 919477, 2022.
Article in English | MEDLINE | ID: covidwho-1938621

ABSTRACT

The interferon-induced transmembrane protein 3 (IFITM3), a small molecule transmembrane protein induced by interferon, is generally conserved in vertebrates, which can inhibit infection by a diverse range of pathogenic viruses such as influenza virus. However, the precise antiviral mechanisms of IFITM3 remain unclear. At least four post-translational modifications (PTMs) were found to modulate the antiviral effect of IFITM3. These include positive regulation provided by S-palmitoylation of cysteine and negative regulation provided by lysine ubiquitination, lysine methylation, and tyrosine phosphorylation. IFITM3 S-palmitoylation is an enzymatic addition of a 16-carbon fatty acid on the three cysteine residues within or adjacent to its two hydrophobic domains at positions 71, 72, and 105, that is essential for its proper targeting, stability, and function. As S-palmitoylation is the only PTM known to enhance the antiviral activity of IFITM3, enzymes that add this modification may play important roles in IFN-induced immune responses. This study mainly reviews the research progresses on the antiviral mechanism of IFITM3, the regulation mechanism of S-palmitoylation modification on its subcellular localization, stability, and function, and the enzymes that mediate the S-palmitoylation modification of IFITM3, which may help elucidate the mechanism by which this IFN effector restrict virus replication and thus aid in the design of therapeutics targeted at pathogenic viruses.


Subject(s)
Antiviral Agents , Lipoylation , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cysteine , Interferons/metabolism , Lysine/metabolism , RNA-Binding Proteins/metabolism
13.
Front Cell Infect Microbiol ; 12: 856711, 2022.
Article in English | MEDLINE | ID: covidwho-1924078

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) could cause lethal diarrhea and dehydration in suckling piglets, which can adversely affect the development of the global swine industry. The lack of effective therapeutical and prophylactic treatment especially for PEDV variant strains underlines the importance of effective antiviral strategies, such as identification of novel antiviral agents. In the present study, the antiviral activity of cinchonine against PEDV was investigated in Vero CCL81 and LLC-PK1 cells at a non-cytotoxic concentration determined by Cell Counting Kit-8 assay in vitro. We found that cinchonine exhibited a significant suppression effect against PEDV infection and its inhibitory action was primarily focused on the early stage of PEDV replication. Moreover, we also observed that cinchonine could significantly induce autophagy by detecting the conversion of LC3-I to LC3-II by using western blot analysis. Cinchonine treatment could inhibit PEDV replication in a dose-dependent manner in Vero CCL81 cells, while this phenomenon disappeared when autophagy was attenuated by pre-treatment with autophagy inhibitor 3MA. Consequently, this study indicated that cinchonine can inhibit PEDV replication via inducing cellular autophagy and thus from the basis for successful antiviral strategies which potentially suggest the possibility of exploiting cinchonine as a novel antiviral agent.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Autophagy , Chlorocebus aethiops , Cinchona Alkaloids , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/drug therapy , Vero Cells , Virus Replication
14.
Front Immunol ; 13: 844657, 2022.
Article in English | MEDLINE | ID: covidwho-1896678

ABSTRACT

Porcine epidemic diarrhea (PED) and transmissible gastroenteritis (TGE) caused by porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are two highly contagious intestinal diseases in the swine industry worldwide. Notably, coinfection of TGEV and PEDV is common in piglets with diarrhea-related diseases. In this study, intestinal porcine epithelial cells (IPEC-J2) were single or coinfected with PEDV and/or TGEV, followed by the comparison of differentially expressed genes (DEGs), especially interferon-stimulated genes (ISGs), between different groups via transcriptomics analysis and real-time qPCR. The antiviral activity of swine interferon-induced transmembrane protein 3 (sIFITM3) on PEDV and TGEV infection was also evaluated. The results showed that DEGs can be detected in the cells infected with PEDV, TGEV, and PEDV+TGEV at 12, 24, and 48 hpi, and the number of DEGs was the highest at 24 hpi. The DEGs are mainly annotated to the GO terms of protein binding, immune system process, organelle part, and intracellular organelle part. Furthermore, 90 ISGs were upregulated during PEDV or TGEV infection, 27 of which were associated with antiviral activity, including ISG15, OASL, IFITM1, and IFITM3. Furthermore, sIFITM3 can significantly inhibit PEDV and TGEV infection in porcine IPEC-J2 cells and/or monkey Vero cells. Besides, sIFITM3 can also inhibit vesicular stomatitis virus (VSV) replication in Vero cells. These results indicate that sIFITM3 has broad-spectrum antiviral activity.


Subject(s)
Coinfection , Gastroenteritis, Transmissible, of Swine , Porcine epidemic diarrhea virus , Transmissible gastroenteritis virus , Animals , Antiviral Agents , Chlorocebus aethiops , Diarrhea , Gastroenteritis, Transmissible, of Swine/metabolism , Interferons/genetics , Porcine epidemic diarrhea virus/genetics , Swine , Transcriptome , Transmissible gastroenteritis virus/genetics , Vero Cells
15.
BMC Cardiovasc Disord ; 22(1): 194, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1817181

ABSTRACT

BACKGROUND: COVID-19 affects healthcare resource allocation, which could lead to treatment delay and poor outcomes in patients with acute myocardial infarction (AMI). We assessed the impact of the COVID-19 pandemic on AMI outcomes. METHODS: We compared outcomes of patients admitted for acute ST-elevation MI (STEMI) and non-STEMI (NSTEMI) during a non-COVID-19 pandemic period (January-February 2019; Group 1, n = 254) and a COVID-19 pandemic period (January-February 2020; Group 2, n = 124). RESULTS: For STEMI patients, the median of first medical contact (FMC) time, door-to-balloon time, and total myocardial ischemia time were significantly longer in Group 2 patients (all p < 0.05). Primary percutaneous intervention was performed significantly more often in Group 1 patients than in Group 2 patients, whereas thrombolytic therapy was used significantly more often in Group 2 patients than in Group 1 patients (all p < 0.05). However, the rates of and all-cause 30-day mortality and major adverse cardiac event (MACE) were not significantly different in the two periods (all p > 0.05). For NSTEMI patients, Group 2 patients had a higher rate of conservative therapy, a lower rate of reperfusion therapy, and longer FMC times (all p < 0.05). All-cause 30-day mortality and MACE were only higher in NSTEMI patients during the COVID-19 pandemic period (p < 0.001). CONCLUSIONS: COVID-19 pandemic causes treatment delay in AMI patients and potentially leads to poor clinical outcome in NSTEMI patients. Thrombolytic therapy should be initiated without delay for STEMI when coronary intervention is not readily available; for NSTEMI patients, outcomes of invasive reperfusion were better than medical treatment.


Subject(s)
COVID-19 , Myocardial Infarction , Non-ST Elevated Myocardial Infarction , ST Elevation Myocardial Infarction , Humans , Myocardial Infarction/diagnosis , Myocardial Infarction/epidemiology , Myocardial Infarction/therapy , Non-ST Elevated Myocardial Infarction/diagnosis , Non-ST Elevated Myocardial Infarction/therapy , Pandemics , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/epidemiology , ST Elevation Myocardial Infarction/therapy , Time Factors , Treatment Outcome
16.
Hum Gene Ther ; 33(7-8): 389-403, 2022 04.
Article in English | MEDLINE | ID: covidwho-1806227

ABSTRACT

While SARS-CoV2 vaccines have shown an unprecedented success, the ongoing emergence of new variants and necessity to adjust vaccines justify the development of alternative prophylaxis and therapy approaches. Hematopoietic stem cell (HSC) gene therapy using a secreted CoV2 decoy receptor protein (sACE2-Ig) would involve a one-time intervention resulting in long-term protection against airway infection, viremia, and extrapulmonary symptoms. We recently developed a technically simple and portable in vivo hematopoietic HSC transduction approach that involves HSC mobilization from the bone marrow into the peripheral blood stream and the intravenous injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. Considering the abundance of erythrocytes, in this study, we directed sACE2-Ig expression to erythroid cells using strong ß-globin transcriptional regulatory elements. We performed in vivo HSC transduction of CD46-transgenic mice with an HDAd-sACE2-Ig vector. Serum sACE2-Ig levels reached 500-1,300 ng/mL after in vivo selection. At 22 weeks, we used genetically modified HSCs from these mice to substitute the hematopoietic system in human ACE2-transgenic mice, thus creating a model that is susceptible to SARS-CoV2 infection. Upon challenge with a lethal dose of CoV2 (WA-1), sACE2-Ig expressed from erythroid cells of test mice diminishes infection sequelae. Treated mice lost significantly less weight, had less viremia, and displayed reduced cytokine production and lung pathology. The second objective of this study was to assess the safety of in vivo HSC transduction and long-term sACE2-Ig expression in a rhesus macaque. With appropriate cytokine prophylaxis, intravenous injection of HDAd-sACE2-Ig into the mobilized animal was well tolerated. In vivo transduced HSCs preferentially localized to and survived in the spleen. sACE2-Ig expressed from erythroid cells did not affect erythropoiesis and the function of erythrocytes. While these pilot studies are promising, the antiviral efficacy of the approach has to be improved, for example, by using of decoy receptors with enhanced neutralizing capacity and/or expression of multiple antiviral effector proteins.


Subject(s)
COVID-19 , RNA, Viral , Animals , COVID-19/therapy , Cytokines/metabolism , Genetic Therapy/methods , Hematopoietic Stem Cells/metabolism , Macaca mulatta , Mice , Mice, Transgenic , RNA, Viral/metabolism , SARS-CoV-2/genetics , Viremia/metabolism
17.
J Virol ; 96(6): e0189721, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1631836

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein mediates viral entry and membrane fusion. Its cleavage at S1/S2 and S2' sites during the biosynthesis in virus producer cells and viral entry are critical for viral infection and transmission. In contrast, the biological significance of the junction region between both cleavage sites for S protein synthesis and function is less understood. By analyzing the conservation and structure of S protein, we found that intrachain contacts formed by the conserved tyrosine (Y) residue 756 (Y756) with three α-helices contribute to the spike's conformational stability. When Y756 is mutated to an amino acid residue that can provide hydrogen bonds, S protein could be expressed as a cleaved form, but not vice versa. Also, the L753 mutation linked to the Y756 hydrogen bond prevents the S protein from being cleaved. Y756 and L753 mutations alter S protein subcellular localization. Importantly, Y756 and L753 mutations are demonstrated to reduce the infectivity of the SARS-CoV-2 pseudoviruses by interfering with the incorporation of S protein into pseudovirus particles and causing the pseudoviruses to lose their sensitivity to neutralizing antibodies. Furthermore, both mutations affect the assembly and production of SARS-CoV-2 virus-like particles in cell culture. Together, our findings reveal for the first time a critical role for the conserved L753-LQ-Y756 motif between S1/S2 and S2' cleavage sites in S protein synthesis and processing as well as virus assembly and infection. IMPORTANCE The continuous emergence of SARS-CoV-2 variants such as the delta or lambda lineage caused the continuation of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. Logically, the spike (S) protein mutation has attracted much concern. However, the key amino acids in S protein for its structure and function are still not very clear. In this study, we discovered for the first time that the conserved residues Y756 and L753 at the junction between the S1/S2 and S2' sites are very important, like the S2' cleavage site R815, for the synthesis and processing of S protein such as protease cleavage, and that the mutations severely interfered with the incorporation of S protein into pseudotyped virus particles and SARS-CoV-2 virus-like particles. Consequently, we delineate the novel potential target for the design of broad-spectrum antiviral drugs in the future, especially in the emergence of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion , Amino Acid Motifs/genetics , COVID-19/virology , Humans , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virus Internalization
18.
Biomed Pharmacother ; 146: 112550, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1588217

ABSTRACT

Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The ß-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/genetics , Genetic Variation/genetics , SARS-CoV-2/genetics , Vaccination/trends , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antiviral Agents/administration & dosage , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Disease Outbreaks/prevention & control , Humans , Medicine, Chinese Traditional/trends , Vaccination/methods , COVID-19 Drug Treatment
19.
Cells ; 10(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572377

ABSTRACT

The SARS-CoV-2 (COVID-19) pandemic has caused millions of deaths worldwide. Early risk assessment of COVID-19 cases can help direct early treatment measures that have been shown to improve the prognosis of severe cases. Currently, circulating miRNAs have not been evaluated as canonical COVID-19 biomarkers, and identifying biomarkers that have a causal relationship with COVID-19 is imperative. To bridge these gaps, we aim to examine the causal effects of miRNAs on COVID-19 severity in this study using two-sample Mendelian randomization approaches. Multiple studies with available GWAS summary statistics data were retrieved. Using circulating miRNA expression data as exposure, and severe COVID-19 cases as outcomes, we identified ten unique miRNAs that showed causality across three phenotype groups of COVID-19. Using expression data from an independent study, we validated and identified two high-confidence miRNAs, namely, hsa-miR-30a-3p and hsa-miR-139-5p, which have putative causal effects on developing cases of severe COVID-19. Using existing literature and publicly available databases, the potential causative roles of these miRNAs were investigated. This study provides a novel way of utilizing miRNA eQTL data to help us identify potential miRNA biomarkers to make better and early diagnoses and risk assessments of severe COVID-19 cases.


Subject(s)
COVID-19/genetics , Circulating MicroRNA/genetics , MicroRNAs/genetics , Patient Acuity , SARS-CoV-2/genetics , Biomarkers/blood , COVID-19/blood , Circulating MicroRNA/blood , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , MicroRNAs/blood , SARS-CoV-2/metabolism
20.
Phytomedicine ; 96: 153888, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1560803

ABSTRACT

BACKGROUND: Traditional Chinese medicine (TCM) is regarded as a large database containing hundreds to thousands of chemical constituents that can be further developed as clinical drugs, such as artemisinin in Artemisia annua. However, effectively exploring novel candidates is still a challenge faced by researchers. PURPOSE: In this work, an integrated strategy combining chemical profiling, molecular networking, chemical isolation, and activity evaluation (CMCA strategy) was proposed and applied to systematically characterize and screen novel candidates, and Forsythiae fructus (FF) was used as an example. STUDY DESIGN: It contained four parts. First, the chemical compounds in FF were detected by ultra-high-performance liquid chromatography-mass spectrometry (UPLC/Q-TOF MS) with data-dependent acquisition, and further, the targeted compounds were screened out based on an in-house database. In the meantime, the representative MS/MS fragmentation behaviors of different chemical structure types were summarized. Second, homologous constituents were grouped and organized based on feature-guided molecular networking, and the nontargeted components with homologous mass fragmentation behaviors were characterized. Third, the novel compounds were isolated and unambiguously identified by nuclear magnetic resonance (NMR). Finally, the anti-angiotensin-converting enzyme 2 (ACE2) activities of isolated chemical constituents were further evaluated by in vitro experiments. RESULTS: A total of 278 compounds were profiled in FF, including 151 targeted compounds and 127 nontargeted compounds. Among them, 16 were unambitiously identified by comparison with reference standards. Moreover, 25 were classified into potential novel compounds. Two novel compounds were unambiguously identified by using conventional chromatographic methods, and they were named phillyrigeninside D (peak 254) and forsythenside O (peak 155). Furthermore, the ACE2 activity of the compounds in FF was evaluated by modern pharmacological methods, and among them, suspensaside A was confirmed to present obvious anti-ACE2 activity. CONCLUSION: Our work provides meaningful information for revealing potential FF candidates for the treatment of COVID-19, along with new insight for exploring novel candidates from complex systems.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Angiotensin-Converting Enzyme 2 , Chromatography, High Pressure Liquid , Humans , Plant Extracts , SARS-CoV-2 , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL