Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
Frontiers in cell and developmental biology ; 11, 2023.
Article in English | EuropePMC | ID: covidwho-2288596

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with adverse impacts in the cardiovascular system, but the mechanisms driving this response remain unclear. In this study, we conducted "pseudoviral infection” of SARS-CoV-2 subunits to evaluate their toxic effects in cardiomyocytes (CMs), that were derived from human induced pluripotent stem cells (hiPSCs). We found that the ectopic expression of S and ORF-9B subunits significantly impaired the contractile function and altered the metabolic profiles in human cardiomyocytes. Further mechanistic study has shown that the mitochondrial oxidative phosphorylation (OXPHOS), membrane potential, and ATP production were significantly decreased two days after the overexpression of S and ORF-9B subunits, while S subunits induced higher level of reactive oxygen species (ROS). Two weeks after overexpression, glycolysis was elevated in the ORF-9B group. Based on the transcriptomic analysis, both S and ORF-9B subunits dysregulated signaling pathways associated with metabolism and cardiomyopathy, including upregulated genes involved in HIF-signaling and downregulated genes involved in cholesterol biosynthetic processes. The ORF-9B subunit also enhanced glycolysis in the CMs. Our results collectively provide an insight into the molecular mechanisms underlying SARS-CoV-2 subunits-induced metabolic alterations and cardiac dysfunctions in the hearts of COVID-19 patients.

3.
Immunity ; 2023.
Article in English | EuropePMC | ID: covidwho-2260017

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer” peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust Spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring one week post the second vaccination (boost), whereas CD8+ T cells peaked two weeks later. These peripheral T cell responses were elevated compared to COVID-19 patients. We also found that prior SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that prior infection can influence the T cell response to vaccination. Graphical Our understanding of T cell responses in COVID-19 and vaccination is incomplete. Gao et al. examine SARS-CoV-2-specific T cell responses to infection and vaccination, revealing disparate kinetics between CD4+ and CD8+ T cells. Furthermore, compared to vaccination alone, circulating CD8+ T cells are attenuated during infection and in subsequent vaccination.

4.
Front Cell Dev Biol ; 11: 1110271, 2023.
Article in English | MEDLINE | ID: covidwho-2288597

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with adverse impacts in the cardiovascular system, but the mechanisms driving this response remain unclear. In this study, we conducted "pseudoviral infection" of SARS-CoV-2 subunits to evaluate their toxic effects in cardiomyocytes (CMs), that were derived from human induced pluripotent stem cells (hiPSCs). We found that the ectopic expression of S and ORF-9B subunits significantly impaired the contractile function and altered the metabolic profiles in human cardiomyocytes. Further mechanistic study has shown that the mitochondrial oxidative phosphorylation (OXPHOS), membrane potential, and ATP production were significantly decreased two days after the overexpression of S and ORF-9B subunits, while S subunits induced higher level of reactive oxygen species (ROS). Two weeks after overexpression, glycolysis was elevated in the ORF-9B group. Based on the transcriptomic analysis, both S and ORF-9B subunits dysregulated signaling pathways associated with metabolism and cardiomyopathy, including upregulated genes involved in HIF-signaling and downregulated genes involved in cholesterol biosynthetic processes. The ORF-9B subunit also enhanced glycolysis in the CMs. Our results collectively provide an insight into the molecular mechanisms underlying SARS-CoV-2 subunits-induced metabolic alterations and cardiac dysfunctions in the hearts of COVID-19 patients.

5.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2260018

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , CD8-Positive T-Lymphocytes , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Antibodies, Viral
6.
Nat Mater ; 22(3): 380-390, 2023 03.
Article in English | MEDLINE | ID: covidwho-2221825

ABSTRACT

The ideal vaccine against viruses such as influenza and SARS-CoV-2 must provide a robust, durable and broad immune protection against multiple viral variants. However, antibody responses to current vaccines often lack robust cross-reactivity. Here we describe a polymeric Toll-like receptor 7 agonist nanoparticle (TLR7-NP) adjuvant, which enhances lymph node targeting, and leads to persistent activation of immune cells and broad immune responses. When mixed with alum-adsorbed antigens, this TLR7-NP adjuvant elicits cross-reactive antibodies for both dominant and subdominant epitopes and antigen-specific CD8+ T-cell responses in mice. This TLR7-NP-adjuvanted influenza subunit vaccine successfully protects mice against viral challenge of a different strain. This strategy also enhances the antibody response to a SARS-CoV-2 subunit vaccine against multiple viral variants that have emerged. Moreover, this TLR7-NP augments antigen-specific responses in human tonsil organoids. Overall, we describe a nanoparticle adjuvant to improve immune responses to viral antigens, with promising implications for developing broadly protective vaccines.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Nanoparticles , Animals , Mice , Humans , Influenza, Human/prevention & control , Toll-Like Receptor 7/genetics , SARS-CoV-2/genetics , COVID-19/prevention & control , Adjuvants, Immunologic/pharmacology , Immunity , Vaccines, Subunit
7.
Pathogens ; 11(6)2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1911499

ABSTRACT

Continuous outbreaks of viral diseases in humans facilitates a need for the rapid development of viral test kits and vaccines. These require expression systems to produce a pure and high yield of target viral proteins. We utilized a baculovirus-silkworm expression system to produce the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. First, we had to develop a strategy for constructing a recombinant baculovirus for RBD expression. For this, the coding region of the Bombyx mori cypovirus (BmCPV) polyhedron was assembled with the Bombyx mori nuclear polyhedrosis virus (BmNPV) promoter. We demonstrated that the recombinant baculovirus has the ability to form polyhedrons within host silkworm cells. In addition, the encapsulated BVs are able to infect silkworms by ingestion and induce foreign protein expression. In this way, we utilized this novel system to obtain a high yield of the target foreign protein, the RBD of the SARS-CoV-2 S protein. However, the viral infection rate of our recombinant BV needs to be improved. Our study shed light on developing a highly efficient expression system for the production of antigens and subsequent immunoassays and vaccines.

8.
Nat Immunol ; 23(4): 543-555, 2022 04.
Article in English | MEDLINE | ID: covidwho-1738613

ABSTRACT

Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Vaccines , Adaptive Immunity , Animals , BNT162 Vaccine , Humans , Immunity, Innate , Mice , Vaccines, Synthetic , mRNA Vaccines
9.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1649487

ABSTRACT

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Germinal Center , Antigens, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
10.
Nature ; 596(7872): 410-416, 2021 08.
Article in English | MEDLINE | ID: covidwho-1305364

ABSTRACT

The emergency use authorization of two mRNA vaccines in less than a year from the emergence of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems vaccinology approach to comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers who were vaccinated with the Pfizer-BioNTech mRNA vaccine (BNT162b2). Vaccination resulted in the robust production of neutralizing antibodies against the wild-type SARS-CoV-2 (derived from 2019-nCOV/USA_WA1/2020) and, to a lesser extent, the B.1.351 strain, as well as significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. Booster vaccination stimulated a notably enhanced innate immune response as compared to primary vaccination, evidenced by (1) a greater frequency of CD14+CD16+ inflammatory monocytes; (2) a higher concentration of plasma IFNγ; and (3) a transcriptional signature of innate antiviral immunity. Consistent with these observations, our single-cell transcriptomics analysis demonstrated an approximately 100-fold increase in the frequency of a myeloid cell cluster enriched in interferon-response transcription factors and reduced in AP-1 transcription factors, after secondary immunization. Finally, we identified distinct innate pathways associated with CD8 T cell and neutralizing antibody responses, and show that a monocyte-related signature correlates with the neutralizing antibody response against the B.1.351 variant. Collectively, these data provide insights into the immune responses induced by mRNA vaccination and demonstrate its capacity to prime the innate immune system to mount a more potent response after booster immunization.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Innate , T-Lymphocytes/immunology , Vaccinology , Adult , Aged , Antibodies, Neutralizing/immunology , Autoantibodies/immunology , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunization, Secondary , Male , Middle Aged , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcription, Genetic , Transcriptome/genetics , Young Adult
11.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1283262

ABSTRACT

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Subject(s)
Epigenomics , Immunity/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Single-Cell Analysis , Transcription, Genetic , Vaccination , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Antigens, CD34/metabolism , Antiviral Agents/pharmacology , Cellular Reprogramming , Chromatin/metabolism , Cytokines/biosynthesis , Drug Combinations , Female , Gene Expression Regulation , Histones/metabolism , Humans , Immunity, Innate/genetics , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/immunology , Interferon Type I/metabolism , Male , Myeloid Cells/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Toll-Like Receptors/metabolism , Transcription Factor AP-1/metabolism , Transcriptome/genetics , Young Adult , alpha-Tocopherol/pharmacology
12.
Res Sq ; 2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1237035

ABSTRACT

The emergency use authorization of two COVID-19 mRNA vaccines in less than a year since the emergence of SARS-CoV-2, represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems biological approach to comprehensively profile the innate and adaptive immune responses in 56 healthy volunteers vaccinated with the Pfizer-BioNTech mRNA vaccine. Vaccination resulted in robust production of neutralizing antibodies (nAbs) against the parent strain and the variant of concern, B.1.351, but no induction of autoantibodies, and significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. The innate response induced within the first 2 days of booster vaccination was profoundly increased, relative to the response at corresponding times after priming. Thus, there was a striking increase in the: (i) frequency of CD14+CD16+ inflammatory monocytes; (ii) concentration of IFN- y in the plasma, which correlated with enhanced pSTAT3 and pSTAT1 levels in monocytes and T cells; and (iii) transcriptional signatures of innate responses characteristic of antiviral vaccine responses against pandemic influenza, HIV and Ebola, within 2 days following booster vaccination compared to primary vaccination. Consistent with these observations, single-cell transcriptomics analysis of 242,479 leukocytes demonstrated a ~100-fold increase in the frequency of a myeloid cluster, enriched in a signature of interferon-response transcription factors (TFs) and reduced in AP-1 TFs, one day after secondary immunization, at day 21. Finally, we delineated distinct molecular pathways of innate activation that correlate with CD8 T cell and nAb responses and identified an early monocyte-related signature that was associated with the breadth of the nAb response against the B1.351 variant strain. Collectively, these data provide insights into the immune responses induced by mRNA vaccines and demonstrate their capacity to stimulate an enhanced innate response following booster immunization.

13.
Nature ; 594(7862): 253-258, 2021 06.
Article in English | MEDLINE | ID: covidwho-1192479

ABSTRACT

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Subject(s)
Adjuvants, Immunologic , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Alum Compounds , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Male , Oligodeoxyribonucleotides , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Squalene
14.
Medicine (Baltimore) ; 99(33): e21484, 2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-740193

ABSTRACT

BACKGROUND: The objective of this study is to investigate the effects of humanistic care and psychological counseling (HCPC) on psychological disorders (PD) in medical students after coronavirus disease 2019 (COVID-19) outbreak. METHODS: We will search randomized controlled trials or case-controlled studies of HCPC on PD in medical students after COVID-19 outbreak in the following electronic databases: PUBMED/MEDLINE, EMBASE, Cochrane Library, CINAHL, AMED, WANGFANG, and CNKI. The time is restricted from the construction of each database to the present. All process of study selection, data collection, and study quality evaluation will be carried out by two independent authors. Any different opinions will be solved by a third author through discussion. We will employ RevMan 5.3 software to conduct statistical analysis. RESULTS: This study will provide a better understanding of HCPC on PD in medical students after COVID-19 outbreak. CONCLUSIONS: This study may offer strong evidence for clinical practice to treat PD in medical students after COVID-19 outbreak. STUDY REGISTRATION: CRD42020193199.


Subject(s)
Coronavirus Infections/psychology , Counseling/methods , Mental Disorders/therapy , Pneumonia, Viral/psychology , Psychotherapy/methods , Students, Medical/psychology , Adult , Betacoronavirus , COVID-19 , Case-Control Studies , Female , Humanism , Humans , Male , Mental Disorders/psychology , Pandemics , Randomized Controlled Trials as Topic , Research Design , SARS-CoV-2 , Systematic Reviews as Topic , Young Adult
15.
Front Immunol ; 11: 1969, 2020.
Article in English | MEDLINE | ID: covidwho-732899

ABSTRACT

Recent small-scale clinical trials have shown promising results in the use of hydroxychloroquine, an FDA approved anti-malaria drug, for the treatment of COVID-19. However, large scale, randomized and double-blind clinical trials are needed to confirm the safety and efficacy of hydroxychloroquine in COVID-19 patients. Here, we review the progress of using hydroxychloroquine or chloroquine as anti-viral agents, failed clinical trials of chloroquine in treatment of dengue virus and influenza infection, and especially the mechanism of azithromycin in inhibiting viral replication, so as to shed light on the ongoing clinical trials and further researches of hydroxychloroquine on SARS-CoV-2 infected patients.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Hydroxychloroquine/adverse effects , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Animals , COVID-19 , Coronavirus Infections/virology , Disease Models, Animal , Drug Therapy, Combination , Humans , Mice , Pandemics , Pneumonia, Viral/virology , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , Virus Replication/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL