Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Front Immunol ; 12: 735125, 2021.
Article in English | MEDLINE | ID: covidwho-1441109


Background: The global outbreak of coronavirus disease 2019 (COVID-19) has turned into a worldwide public health crisis and caused more than 100,000,000 severe cases. Progressive lymphopenia, especially in T cells, was a prominent clinical feature of severe COVID-19. Activated HLA-DR+CD38+ CD8+ T cells were enriched over a prolonged period from the lymphopenia patients who died from Ebola and influenza infection and in severe patients infected with SARS-CoV-2. However, the CD38+HLA-DR+ CD8+ T population was reported to play contradictory roles in SARS-CoV-2 infection. Methods: A total of 42 COVID-19 patients, including 32 mild or moderate and 10 severe or critical cases, who received care at Beijing Ditan Hospital were recruited into this retrospective study. Blood samples were first collected within 3 days of the hospital admission and once every 3-7 days during hospitalization. The longitudinal flow cytometric data were examined during hospitalization. Moreover, we evaluated serum levels of 45 cytokines/chemokines/growth factors and 14 soluble checkpoints using Luminex multiplex assay longitudinally. Results: We revealed that the HLA-DR+CD38+ CD8+ T population was heterogeneous, and could be divided into two subsets with distinct characteristics: HLA-DR+CD38dim and HLA-DR+CD38hi. We observed a persistent accumulation of HLA-DR+CD38hi CD8+ T cells in severe COVID-19 patients. These HLA-DR+CD38hi CD8+ T cells were in a state of overactivation and consequent dysregulation manifested by expression of multiple inhibitory and stimulatory checkpoints, higher apoptotic sensitivity, impaired killing potential, and more exhausted transcriptional regulation compared to HLA-DR+CD38dim CD8+ T cells. Moreover, the clinical and laboratory data supported that only HLA-DR+CD38hi CD8+ T cells were associated with systemic inflammation, tissue injury, and immune disorders of severe COVID-19 patients. Conclusions: Our findings indicated that HLA-DR+CD38hi CD8+ T cells were correlated with disease severity of COVID-19 rather than HLA-DR+CD38dim population.

CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immune System Diseases/immunology , SARS-CoV-2 , Adult , Aged , CD8 Antigens/immunology , Cytokines/immunology , Female , HLA-DR Antigens/immunology , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Young Adult
Sci China Life Sci ; 65(2): 341-361, 2022 02.
Article in English | MEDLINE | ID: covidwho-1245727


Viruses utilize cellular lipids and manipulate host lipid metabolism to ensure their replication and spread. Therefore, the identification of lipids and metabolic pathways that are suitable targets for antiviral development is crucial. Using a library of compounds targeting host lipid metabolic factors and testing them for their ability to block pseudorabies virus (PRV) and vesicular stomatitis virus (VSV) infection, we found that U18666A, a specific inhibitor of Niemann-Pick C1 (NPC1), is highly potent in suppressing the entry of diverse viruses including pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). NPC1 deficiency markedly attenuates viral growth by decreasing cholesterol abundance in the plasma membrane, thereby inhibiting the dynamics of clathrin-coated pits (CCPs), which are indispensable for clathrin-mediated endocytosis. Significantly, exogenous cholesterol can complement the dynamics of CCPs, leading to efficient viral entry and infectivity. Administration of U18666A improves the survival and pathology of PRV- and influenza A virus-infected mice. Thus, our studies demonstrate a unique mechanism by which NPC1 inhibition achieves broad antiviral activity, indicating a potential new therapeutic strategy against SARS-CoV-2, as well as other emerging viruses.

Androstenes/pharmacology , Clathrin/physiology , Coated Pits, Cell-Membrane/physiology , DNA Viruses/drug effects , Niemann-Pick C1 Protein/physiology , RNA Viruses/drug effects , Virus Internalization/drug effects , DNA Viruses/physiology , Niemann-Pick C1 Protein/antagonists & inhibitors , RNA Viruses/physiology
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: covidwho-803471


The COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2s from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site-deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activities, respectively. Among the remaining species, ACE2s from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.IMPORTANCE SARS-CoV-2 uses human ACE2 as a primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologs and found that wild-type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models, and molecular basis of receptor binding for SARS-CoV-2.

Animal Diseases/metabolism , Animal Diseases/virology , Betacoronavirus/physiology , Coronavirus Infections/veterinary , Pandemics/veterinary , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/veterinary , Receptors, Virus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/classification , COVID-19 , Cell Line , Host Specificity , Humans , Models, Molecular , Mutation , Peptidyl-Dipeptidase A/chemistry , Phylogeny , Protein Binding , Protein Domains , Proteolysis , Receptors, Virus/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Viral Tropism , Virus Internalization
Signal Transduct Target Ther ; 5(1): 192, 2020 09 07.
Article in English | MEDLINE | ID: covidwho-748172

Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Gene Expression Regulation/immunology , Lymphopenia/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , Biomarkers/blood , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Coronavirus Infections/mortality , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/mortality , Disease Progression , Female , Hepatitis A Virus Cellular Receptor 2/blood , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/blood , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Lymphocyte Count , Lymphopenia/diagnosis , Lymphopenia/genetics , Lymphopenia/mortality , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , Pneumonia, Viral/mortality , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Survival Analysis , T-Lymphocytes/virology , Tumor Necrosis Factor Receptor Superfamily, Member 7/blood , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/blood , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: covidwho-639615


C3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells. Functional analyses revealed that ectopic expression of LY6E, but not GILT or ADAP2, in HEK 293 cells inhibited the entry of HCoV-O43. While overexpression of LY6E in C3A and A549 cells efficiently inhibited the infection of HCoV-OC43, knockdown of LY6E expression in HepG2 significantly increased its susceptibility to HCoV-OC43 infection. Moreover, we found that LY6E also efficiently restricted the entry mediated by the envelope spike proteins of other human coronaviruses, including the currently pandemic SARS-CoV-2. Interestingly, overexpression of serine protease TMPRSS2 or amphotericin treatment significantly neutralized the IFN-inducible transmembrane 3 (IFITM3) restriction of human coronavirus (CoV) entry, but did not compromise the effect of LY6E on the entry of human coronaviruses. The work reported herein thus demonstrates that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis via a mechanism distinct from other factors that modulate CoV entry.IMPORTANCE Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection.

Antigens, Surface/metabolism , Betacoronavirus/physiology , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus/physiology , Host-Pathogen Interactions , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Virus Internalization , Amino Acid Sequence , Amphotericin B/pharmacology , Betacoronavirus/drug effects , COVID-19 , Cell Line , Coronavirus/drug effects , Coronavirus Infections/epidemiology , Disease Susceptibility , Evolution, Molecular , GPI-Linked Proteins/metabolism , Humans , Pandemics , Pneumonia, Viral/epidemiology , Protein Sorting Signals , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism