Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Vis Exp ; (185)2022 07 25.
Article in English | MEDLINE | ID: covidwho-1988090

ABSTRACT

Biomimetic nanoparticles obtained from bacteria or viruses have attracted substantial interest in vaccine research and development. Outer membrane vesicles (OMVs) are mainly secreted by gram-negative bacteria during average growth, with a nano-sized diameter and self-adjuvant activity, which may be ideal for vaccine delivery. OMVs have functioned as a multifaceted delivery system for proteins, nucleic acids, and small molecules. To take full advantage of the biological characteristics of OMVs, bioengineered Escherichia coli-derived OMVs were utilized as a carrier and SARS-CoV-2 receptor-binding domain (RBD) as an antigen to construct a "Plug-and-Display" vaccine platform. The SpyCatcher (SC) and SpyTag (ST) domains in Streptococcus pyogenes were applied to conjugate OMVs and RBD. The Cytolysin A (ClyA) gene was translated with the SC gene as a fusion protein after plasmid transfection, leaving a reactive site on the surface of the OMVs. After mixing RBD-ST in a conventional buffer system overnight, covalent binding was formed between the OMVs and RBD. Thus, a multivalent-displaying OMV vaccine was achieved. By replacing with diverse antigens, the OMVs vaccine platform can efficiently display a variety of heterogeneous antigens, thereby potentially rapidly preventing infectious disease epidemics. This protocol describes a precise method for constructing the OMV vaccine platform, including production, purification, bioconjugation, and characterization.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Antigens/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , SARS-CoV-2
2.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337718

ABSTRACT

The ongoing SARS-CoV-2 pandemic represents a brutal reminder of the continual threat of mucosal infectious diseases. Mucosal immunity may provide robust protection at the predominant sites of SARS-CoV-2 infection. However, it remains unclear whether respiratory mucosal administration of DNA vaccines could confer protective immune responses against SARS-CoV-2 challenge due to the insurmountable barriers posed by the airway. Here, we applied self-assembled peptide-poloxamine nanoparticles with mucus-penetrating properties for pulmonary inoculation of a COVID-19 DNA vaccine (pSpike/PP-sNp). Not only displays the pSpike/PP-sNp superior gene-transfection and favorable biocompatibility in the mouse airway, but pSpike/PP-sNp promotes a tripartite immunity consisting of systemic, cellular and mucosal immune responses that are characterized by mucosal IgA secretion, high levels of neutralizing antibodies, and resident memory phenotype T-cell responses in the lungs of mice. Most importantly, pSpike/PP-sNp completely eliminates SARS-CoV-2 infection in both upper and lower respiratory tracts and enables 100% survival rate of mice following lethal SARS-CoV-2 challenge. Our findings indicate PP-sNp might be a promising platform in mediating DNA vaccines to elicit all-around mucosal immunity against SARS-CoV-2.

3.
Front Immunol ; 13: 833418, 2022.
Article in English | MEDLINE | ID: covidwho-1771038

ABSTRACT

As TLR2 agonists, several lipopeptides had been proved to be candidate vaccine adjuvants. In our previous study, lipopeptides mimicking N-terminal structures of the bacterial lipoproteins were also able to promote antigen-specific immune response. However, the structure-activity relationship of lipopeptides as TLR2 agonists is still unclear. Here, 23 synthetic lipopeptides with the same lipid moiety but different peptide sequences were synthesized, and their TLR2 activities in vitro and mucosal adjuvant effects to OVA were evaluated. LP1-14, LP1-30, LP1-34 and LP2-2 exhibited significantly lower cytotoxicity and stronger TLR2 activity compared with Pam2CSK4, the latter being one of the most potent TLR2 agonists. LP1-34 and LP2-2 assisted OVA to induce more profound specific IgG in sera or sIgA in BALF than Pam2CSK4. Furthermore, the possibility of LP1-34, LP2-2 and Pam2CSK4 as the mucosal adjuvant for the SARS-CoV-2 recombinant RBD (rRBD) was investigated. Intranasally immunized with rRBD plus either the novel lipopeptide or Pam2CSK4 significantly increased the levels of specific serum and respiratory mucosal IgG and IgA, while rRBD alone failed to induce specific immune response due to its low immunogenicity. The novel lipopeptides, especially LP2-2, significantly increased levels of rRBD-induced SARS-CoV-2 neutralizing antibody in sera, BALF and nasal wash. Finally, Support vector machine (SVM) results suggested that charged residues in lipopeptides might be beneficial to the agonist activity, while lipophilic residues might adversely affect the agonistic activity. Figuring out the relationship between peptide sequence in the lipopeptide and its TLR2 activity may lay the foundation for the rational design of novel lipopeptide adjuvant for COVID-19 vaccine.


Subject(s)
COVID-19 , Lipopeptides , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , COVID-19 Vaccines , Humans , Immunity , Immunoglobulin G , Lipopeptides/pharmacology , SARS-CoV-2 , Toll-Like Receptor 2
4.
Vaccines (Basel) ; 10(3)2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753699

ABSTRACT

Aims: To report potential vaccine-induced ocular adverse events following inactivated COVID-19 vaccination (Sinopharm and Sinovac). Methods: This case series took place at a tertiary referral center in the southeast of China (Xiamen Eye Center in Fujian Province) from February 2021 to July 2021. Patients who received the first dose of inactivated COVID-19 vaccine and developed vaccine-related ocular adverse events within 10 days were included. The diagnosis of vaccine-related ocular adverse events was guided by the World Health Organization causality assessment and the Naranjo criteria. Results: Ten eyes of seven patients (two male individuals) presenting with ocular complaints following COVID-19 vaccine were included in the study. The mean (SD) age was 41.4 (9.3) years (range, 30-55 years). The mean time of ocular adverse event manifestations was 4.9 days (range, 1-10 days). Three patients were diagnosed with Vogt-Koyanagi-Harada (VKH)-like uveitis, one with multifocal choroiditis, one with episcleritis, one with iritis, and one with acute idiopathic maculopathy. Two patients received the second dose of vaccine. One patient had exacerbation of VKH, and one patient had no symptoms. An aqueous humor analysis in three patients revealed elevated proinflammatory cytokines and negative virus copy. All the patients had transient ocular disturbance and responded well to steroids. No recurrence was noted during 6 months of follow-up. Conclusions: Potential ocular adverse events should be reported to increase the awareness of the health community for timely detection and proper treatment.

5.
Vaccines (Basel) ; 8(2)2020 Mar 29.
Article in English | MEDLINE | ID: covidwho-1726034

ABSTRACT

In December 2019, the outbreak of pneumonia caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a serious pandemic in China and other countries worldwide. So far, more than 460,000 confirmed cases were diagnosed in nearly 190 countries, causing globally over 20,000 deaths. Currently, the epidemic is still spreading and there is no effective means to prevent the infection. Vaccines are proved to be the most effective and economical means to prevent and control infectious diseases. Several countries, companies, and institutions announced their programs and progress on vaccine development against the virus. While most of the vaccines are under design and preparation, there are some that have entered efficacy evaluation in animals and initial clinical trials. This review mainly focused on the progress and our prospects on field of vaccine development against SARS-CoV-2.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325232

ABSTRACT

Background: Upper respiratory tract specimens are widely applicable for the diagnosis of COVID-19. To date, no study has analyzed the actual viral loads in upper respiratory tract and its relationship with the severity of lung lesions, Ct value of RT-PCR and transmission capacity in COVID-19 patients. Methods: : We retrospectively enrolled nine COVID-19 patients. Clinical data and close contacts of these patients were investigated. Respiratory samples were tested for SARS-CoV-2 with both normal RT-PCR and droplet digital PCR. Results: : All the COVID-19 patients complicated with pneumonia. Viral loads in nasopharyngeal swabs were accurately quantified, and they had no direct correspondence with the severity of lung lesions. The Cycle Threshold (Ct) value of RT-PCR was approximately consistent with the absolute quantification of digital PCR. The spearman correlation coefficient between them was -0.952 with P value < 0.001. Close contacts of patients with very low viral load or no detected virus were not infected. Conclusions: : Viral loads in nasopharyngeal swabs, could not predict the severity of lung lesions revealed by CT in COVID-19 patients. The infectious capacity of patients with low or absent viral load in upper respiratory tract was relatively weak, and wearing mask might be helpful for lower its spread.

7.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-319973

ABSTRACT

Background: The pandemic of Coronavirus disease 2019 (COVID-19) is ongoing globally, which is a big challenge for public health. Alteration of human microbiota had been observed in COVID-19. However, it is unknown how the microbiota is associated with the fatality in COVID-19.Methods: We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 COVID-19 patients recruited in the LOTUS clinical trial (Registration number: ChiCTR2000029308) (including 39 deceased patients), and 95 healthy controls from the same geographic area.Findings: The upper respiratory tract (URT) microbiota in COVID-19 patients differed from that in healthy controls, while deceased patients possessed a more distinct microbiota. Streptococcus was enriched in recovered patients, whereas potential pathogens, including Candida and Enterococcus, were more abundant in deceased patients. Moreover, the microbiota dominated by Streptococcus was more stable than that dominated by other species. In contrast, the URT microbiota in deceased patients showed a more significant alteration and became more deviated from the norm after admission. The abundance of Streptococcus on admission, particularly that of S. parasanguis, was identified as a strong predictor of fatality by Cox and L1 regularized logistic regression analysis, thus could be used as a potential prognostic biomarker of COVID-19.Interpretation Alteration of the URT microbiota was observed in COVID-19 patients and was associated with the fatality rate. A higher abundance of Streptococcus, especially S. parasanguis, on admission in oropharyngeal swabs predicts a better outcome. The generalization of the results in other populations and underlying mechanisms need further investigations.Trial Registration: Participants were enrolled in ChiCTR2000029308.Funding: This study was funded in part by the National Major Science & Technology Project for Control and Prevention of Major Infectious Diseases in China (2017ZX10103004, 2018ZX10301401), the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2019-I2M-2-XX, 2016-I2M-1-014, 2018-I2M-1-003), The Non-profit Central Research Institute Fund of CAMS (2020HY320001, 2019PT310029), Beijing Advanced Innovation Center for Genomics (ICG), and Beijing Advanced Innovation Center for Structural Biology (ICSB).Declaration of Interests: All authors declare no competing interests.Ethics Approval Statement: The study was approved by the Institutional Review Board of Jin Yin-Tan Hospital (KY2020-02.01). Written informed consent was obtained from all patients or their legal representatives if they were too unwell to provide consent.

8.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311704

ABSTRACT

Background: Seasonal human coronaviruses (HCoVs) including HCoV-229E, -OC43, -NL63 and -HKU1 are widely spreading in global human populations. However, the relevance of humoral response against seasonal HCoVs to COVID-19 pathogenesis is elusive.Methods: We profiled the temporal changes of IgG antibodies against spike (S;S-IgG) proteins of SARS-CoV-2 and seasonal HCoVs in 838 plasma samples collected from 344 COVID-19 patients. We tested the antigenic cross-reactivity of S protein between SARS-CoV-2 and seasonal HCoVs and evaluated the correlations between HCoV-OC43 S-IgG antibody and disease severity in COVID-19 patients.Findings: SARS-CoV-2 S-IgG titers mounted until days 22–28, whereas HCoV-OC43 antibody titers increased until days 15–21 and then plateaued until day 46. However, IgG antibody titers against HCoV-NL63, -229E, and -HKU1 showed no significant increasing. A two-way cross-reactivity was identified between SARS-CoV-2 and HCoV-OC43. Neutralizing antibodies against SARS-CoV-2 were not detected in healthy controls who were positive for HCoV-OC43 S-IgG. HCoV-OC43 S-IgG titers were significantly higher in patients with severe disease than those in mild/moderate patients at days 1–21 post symptom onset (PSO). Higher levels of HCoV-OC43 S-IgG were also observed in patients requiring mechanical ventilation and the elderly. At days 1–10 PSO, HCoV-OC43 S-IgG titers correlated to disease severity in all age groups, and to fatality in over 60-year group.Interpretation: Our data indicate that there exist a humoral cross-reactive response between HCoV-OC43 and SARS-CoV-2. The cross-reactive HCoV-OC43 S-IgG antibody is not protective against SARS-CoV-2, but may be a risk factor for the severity and adverse outcome of COVID-19.Funding Statement: This study was funded in part by the National Major Science & Technology Project for Control and Prevention of Major Infectious Diseases in China (2017ZX10204401, 2018ZX10734404), Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2016-I2M-1–014, 2018-I2M-1-003, 2020-I2M-1-001, 2020-I2M-CoV19-005), Natural Science Foundation of China (82041011/H0104), and National Key R&D Program of China (2020YFA0707600). Declaration of Interests: The authors declare no competing interests.Ethics Approval Statement: This study was approved by the Ethical Review Board of Wuhan Jinyintan Hospital, Infectious Disease Hospital of Heilongjiang Province (Harbin), and Institute of Pathogen Biology, Chinese Academy of Medical Sciences. Written informed consent was obtained from each healthy volunteer and COVID-19 patients in cohort 4. Written informed consents from the remaining patients were waived in light of the emerging infectious disease of high public health relevance.

9.
iScience ; 25(1): 103720, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1665029

ABSTRACT

It is unknown whether antibody-mediated enhancement (ADE) contributes to the pathogenesis of COVID-19, and the conditions for ADE needs to be elucidated. We demonstrated that without inducing an ACE2-independent ADE on Raji cells, the neutralizing antibody CB6, a mouse anti-S1 serum and convalescent plasma, induced ADE on cells expressing FcγRIIA/CD32A and low levels of endogenous ACE2. ADE occurred at sub-neutralizing antibody concentrations, indicating that unneutralized S protein was required for ADE. The enhanced infectivity of 614G variant was higher than that of 614D wildtype in the presence of antibodies, further suggesting that ADE may be influenced by virus strains with different ACE2-binding affinity. Finally, knockdown of ACE2 or treatment with a fusion-inhibition peptide EK1C4 significantly reduced ADE. In conclusion, we identified an ADE mechanism mediated by neutralizing antibodies against SARS-CoV-2. ACE2 may act as a secondary receptor required for the antibody- and FcγR-mediated enhanced entry of SARS-CoV-2.

10.
Virol Sin ; 37(1): 30-37, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1639630

ABSTRACT

Little is known about Subgenomic RNA (sgRNA) dynamics in patients with Coronavirus diseases 2019 (COVID-19). We collected 147 throat swabs, 74 gut swabs and 46 plasma samples from 117 COVID-19 patients recruited in the LOTUS China trial (ChiCTR2000029308) and compared E and orf7a sgRNA load in patients with different illness duration, outcome, and comorbidities. Both sgRNAs were detected in all the three types of samples, with longest duration of 25, 13, and 17 days for E sgRNA, and 32, 28, and 17 days for orf7a sgRNA in throat, gut, and plasma, respectively. A total of 95% (57/60) of patients had no E sgRNA detected after 10 days post treatment, though 86% of them were still E RNA positive. High correlation on titer was observed between sgRNA encoding E and orf7a gene. sgRNA showed similar variation in the standard care and Lopinavir-Ritonavir group. Patients with diabetes and heart diseases showed higher pharyngeal E sgRNA at the first day (P â€‹= â€‹0.016 and 0.013, respectively) but no difference at five days after treatment, compared with patients without such commodities. Patients with hypertension and cerebrovascular diseases showed no difference in the pharyngeal sgRNA levels at both one and five days after treatment, compared with patients without these two commodities. E sgRNA levels in the initial infection showed no correlation with the serum antibody against spike, nucleoprotein, and receptor binding domains at ten days later. sgRNA lasted a long period in COVID-19 patients and might have little effect on humoral response.


Subject(s)
COVID-19 , SARS-CoV-2 , China , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Serologic Tests
11.
Am J Respir Crit Care Med ; 204(12): 1379-1390, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1430274

ABSTRACT

Rationale: Alteration of human respiratory microbiota had been observed in coronavirus disease (COVID-19). How the microbiota is associated with the prognosis in COVID-19 is unclear. Objectives: To characterize the feature and dynamics of the respiratory microbiota and its associations with clinical features in patients with COVID-19. Methods: We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 patients with COVID-19 (including 39 deceased patients) and 95 healthy controls from the same geographic area. Meanwhile, the concentration of 27 cytokines and chemokines in plasma was measured for patients with COVID-19. Measurements and Main Results: The upper respiratory tract (URT) microbiota in patients with COVID-19 differed from that in healthy controls, whereas deceased patients possessed a more distinct microbiota, both on admission and before discharge/death. The alteration of URT microbiota showed a significant correlation with the concentration of proinflammatory cytokines and mortality. Specifically, Streptococcus-dominated microbiota was enriched in recovered patients, and showed high temporal stability and resistance against pathogens. In contrast, the microbiota in deceased patients was more susceptible to secondary infections and became more deviated from the norm after admission. Moreover, the abundance of S. parasanguinis on admission was significantly correlated with prognosis in nonsevere patients (lower vs. higher abundance, odds ratio, 7.80; 95% CI, 1.70-42.05). Conclusions: URT microbiota dysbiosis is a remarkable manifestation of COVID-19; its association with mortality suggests it may reflect the interplay between pathogens, symbionts, and the host immune status. Whether URT microbiota could be used as a biomarker for diagnosis and prognosis of respiratory diseases merits further investigation.


Subject(s)
COVID-19/microbiology , COVID-19/mortality , Microbiota , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/mortality , Adult , Aged , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Prognosis , SARS-CoV-2
13.
Phytomedicine ; 90: 153635, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1275633

ABSTRACT

BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases and could occur in severe COVID-19 patients. Re-Du-Ning injection (RDN) is a tradition Chinese medicine preparation which has been clinically used for treatment of respiratory diseases including COVID-19. PURPOSE: To elucidate the potential mechanisms of RDN for the treatment of ALI. METHODS: Female C57BL/6J mice were used to establish ALI model by intraperitoneal injection 10 mg/kg LPS, and RDN injection was intraperitoneally administered with the dose of 5 and 10 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to NETs were analyzed by ELISA, immunofluorescence, Western blotting and network pharmacological approach. RESULTS: RDN robustly alleviated LPS-induced ALI. Meanwhile, RDN downregulated the expression of pro-inflammatory cytokines, such as IL-1ß, IL-6 and TNF-α. Specifically, RDN treatment inhibited the formation of neutrophil extracellular traps (NETs) and remarkably suppressed the protein of PAD4. The active compound from RDN decreased the phosphorylation of ERK1/2. CONCLUSION: These findings demonstrate that RDN ameliorates LPS-induced ALI through suppressing MAPK pathway to inhibit the formation of NETs.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal/pharmacology , Extracellular Traps , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Female , Lipopolysaccharides , Lung , Mice , Mice, Inbred C57BL
14.
Emerg Microbes Infect ; 10(1): 664-676, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1139855

ABSTRACT

Seasonal human coronaviruses (HCoVs) including HCoV-229E, -OC43, -NL63, and -HKU1 widely spread in global human populations. However, the relevance of humoral response against seasonal HCoVs to COVID-19 pathogenesis is elusive. In this study, we profiled the temporal changes of IgG antibody against spike proteins (S-IgG) of SARS-CoV-2 and seasonal HCoVs in 838 plasma samples collected from 344 COVID-19 patients. We tested the antigenic cross-reactivities of S protein between SARS-CoV-2 and seasonal HCoVs and evaluated the correlations between the levels of HCoV-OC43 S-IgG and the disease severity in COVID-19 patients. We found that SARS-CoV-2 S-IgG titres mounted until days 22-28, whereas HCoV-OC43 antibody titres increased until days 15-21 and then plateaued until day 46. However, IgG titres against HCoV-NL63, -229E, and -HKU1 showed no significant increase. A two-way cross-reactivity was identified between SARS-CoV-2 and HCoV-OC43. Neutralizing antibodies against SARS-CoV-2 were not detectable in healthy controls who were positive for HCoV-OC43 S-IgG. HCoV-OC43 S-IgG titres were significantly higher in patients with severe disease than those in mild patients at days 1-21 post symptom onset (PSO). Higher levels of HCoV-OC43 S-IgG were also observed in patients requiring mechanical ventilation. At days 1-10 PSO, HCoV-OC43 S-IgG titres correlated to disease severity in the age group over 60. Our data indicate that there is a correlation between cross-reactive antibody against HCoV-OC43 spike protein and disease severity in COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Coronavirus OC43, Human/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Severity of Illness Index , Young Adult
16.
Emerg Microbes Infect ; 9(1): 2707-2714, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-953975

ABSTRACT

To identify the association between the kinetics of viral load and clinical outcome in severe coronavirus disease 2019 (COVID-19) patients, a retrospective study was performed by involved 188 hospitalized severe COVID-19 patients in the LOTUS China trial. Among the collected 578 paired throat swab (TS) and anal swab (AS) samples, viral RNA was detected in 193 (33.4%) TS and 121 (20.9%) AS. A higher viral RNA load was found in TS than that of AS, with means of 1.0 × 106 and 2.3 × 105 copies/ml, respectively. In non-survivors, the viral RNA in AS was detected earlier than that in survivors (median of 14 days vs 19 days, P = 0.007). The positivity and viral load in AS were higher in non-survivors than that of survivors at week 2 post symptom onset (P = 0.006). A high initial viral load in AS was associated with death (OR 1.368, 95% CI 1.076-1.741, P = 0.011), admission to the intensive care unit (OR 1.237, 95% CI 1.001-1.528, P = 0.049) and need for invasive mechanical ventilation (OR 1.340, 95% CI 1.076-1.669, P = 0.009). Our findings indicated viral replication in extrapulmonary sites should be monitored intensively during antiviral therapy.


Subject(s)
Anal Canal/virology , COVID-19/virology , SARS-CoV-2/isolation & purification , Viral Load , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , Female , Humans , Male , Middle Aged , Pharynx/virology , RNA, Viral/analysis , Retrospective Studies , Time Factors , Virus Replication , Young Adult
17.
EBioMedicine ; 62: 103125, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-938894

ABSTRACT

BACKGROUND: The pharmacokinetics and appropriate dose regimens of favipiravir are unknown in hospitalized influenza patients; such data are also needed to determine dosage selection for favipiravir trials in COVID-19. METHODS: In this dose-escalating study, favipiravir pharmacokinetics and tolerability were assessed in critically ill influenza patients. Participants received one of two dosing regimens; Japan licensed dose (1600 mg BID on day 1 and 600 mg BID on the following days) and the higher dose (1800 mg/800 mg BID) trialed in uncomplicated influenza. The primary pharmacokinetic endpoint was the proportion of patients with a minimum observed plasma trough concentration (Ctrough) ≥20 mg/L at all measured time points after the second dose. RESULTS: Sixteen patients were enrolled into the low dose group and 19 patients into the high dose group of the study. Favipiravir Ctrough decreased significantly over time in both groups (p <0.01). Relative to day 2 (48 hrs), concentrations were 91.7% and 90.3% lower in the 1600/600 mg group and 79.3% and 89.5% lower in the 1800/800 mg group at day 7 and 10, respectively. In contrast, oseltamivir concentrations did not change significantly over time. A 2-compartment disposition model with first-order absorption and elimination described the observed favipiravir concentration-time data well. Modeling demonstrated that less than 50% of patients achieved Ctrough ≥20 mg/L for >80% of the duration of treatment of the two dose regimens evaluated (18.8% and 42.1% of patients for low and high dose regimen, respectively). Increasing the favipravir dosage predicted a higher proportion of patients reaching this threshold of 20 mg/L, suggesting that dosing regimens of ≥3600/2600 mg might be required for adequate concentrations. The two dosing regimens were well-tolerated in critical ill patients with influenza. CONCLUSION: The two dosing regimens proposed for uncomplicated influenza did not achieve our pre-defined treatment threshold.


Subject(s)
Amides , Influenza, Human/drug therapy , Oseltamivir , Pyrazines , Aged , Amides/administration & dosage , Amides/pharmacokinetics , Drug Therapy, Combination , Female , Humans , Influenza, Human/blood , Male , Middle Aged , Oseltamivir/administration & dosage , Oseltamivir/pharmacokinetics , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Severity of Illness Index
18.
Signal Transduct Target Ther ; 5(1): 219, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834865

ABSTRACT

Convalescent plasma (CP) transfusion has been indicated as a promising therapy in the treatment for other emerging viral infections. However, the quality control of CP and individual variation in patients in different studies make it rather difficult to evaluate the efficacy and risk of CP therapy for coronavirus disease 2019 (COVID-19). We aimed to explore the potential efficacy of CP therapy, and to assess the possible factors associated with its efficacy. We enrolled eight critical or severe COVID-19 patients from four centers. Each patient was transfused with 200-400 mL of CP from seven recovered donors. The primary indicators for clinical efficacy assessment were the changes of clinical symptoms, laboratory parameters, and radiological image after CP transfusion. CP donors had a wide range of antibody levels measured by serology tests which were to some degree correlated with the neutralizing antibody (NAb) level. No adverse events were observed during and after CP transfusion. Following CP transfusion, six out of eight patients showed improved oxygen support status; chest CT indicated varying degrees of absorption of pulmonary lesions in six patients within 8 days; the viral load was decreased to a negative level in five patients who had the previous viremia; other laboratory parameters also tended to improve, including increased lymphocyte counts, decreased C-reactive protein, procalcitonin, and indicators for liver function. The clinical efficacy might be associated with CP transfusion time, transfused dose, and the NAb levels of CP. This study indicated that CP might be a potential therapy for severe patients with COVID-19.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Viral/administration & dosage , Betacoronavirus/pathogenicity , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adult , Aged , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Progression , Female , Humans , Immunization, Passive/methods , Liver Function Tests , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Procalcitonin/blood , SARS-CoV-2 , Severity of Illness Index , Tomography, X-Ray Computed , Viral Load
19.
Eur J Pharmacol ; 883: 173326, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-619687

ABSTRACT

Since December 2019, the coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread throughout China as well as other countries. More than 8,700,000 confirmed COVID-19 cases have been recorded worldwide so far, with much more cases popping up overseas than those inside. As the initial epicenter in the world, China has been combating the epidemic for a relatively longer period and accumulated valuable experience in prevention and control of COVID-19. This article reviewed the clinical use, mechanism and efficacy of the clinically approved drugs recommended in the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (DTPNCP) released by National Health Commission of P.R.China, and the novel therapeutic agents now undergoing clinical trials approved by China National Medical Products Administration (NMPA) to evaluate experimental treatment for COVID-19. Reviewing the progress in drug development for the treatment against COVID-19 in China may provide insight into the epidemic control in other countries.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus/drug effects , COVID-19 , China/epidemiology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL