Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Disease Surveillance ; 37(2):224-227, 2022.
Article in Chinese | GIM | ID: covidwho-1855878

ABSTRACT

Objective: To analyze the characteristics of the associated epidemics in Tongzhou district of Beijing from 2015 to 2020, identify the risk factors and provide scientific basis for the early warning, prevention and control of infectious disease epidemics.

2.
Lancet Respir Med ; 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1852285

ABSTRACT

BACKGROUND: Due to waning immunity and protection against infection with SARS-CoV-2, a third dose of a homologous or heterologous COVID-19 vaccine has been proposed by health agencies for individuals who were previously primed with two doses of an inactivated COVID-19 vaccine. METHODS: We did a randomised, open-label, controlled trial to evaluate the safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in Chinese adults (≥18 years old) who had previously received two doses of an inactivated SARS-CoV-2 vaccine-Sinovac CoronaVac. Eligible participants were randomly assigned (1:1:1) to receive a heterologous booster vaccination with a low dose (1·0 × 1011 viral particles per mL; 0·1 mL; low dose group), or a high dose (1·0 × 1011 viral particles per mL; 0·2 mL; high dose group) aerosolised Ad5-nCoV, or a homologous intramuscular vaccination with CoronaVac (0·5 mL). Only laboratory staff were masked to group assignment. The primary endpoint for safety was the incidence of adverse reactions within 14 days after the booster dose. The primary endpoint for immunogenicity was the geometric mean titres (GMTs) of serum neutralising antibodies (NAbs) against live SARS-CoV-2 virus 14 days after the booster dose. This study was registered with ClinicalTrials.gov, NCT05043259. FINDINGS: Between Sept 14 and 16, 2021, 420 participants were enrolled: 140 (33%) participants per group. Adverse reactions were reported by 26 (19%) participants in the low dose group and 33 (24%) in the high dose group within 14 days after the booster vaccination, significantly less than the 54 (39%) participants in the CoronaVac group (p<0·0001). The low dose group had a serum NAb GMT of 744·4 (95% CI 520·1-1065·6) and the high dose group had a GMT of 714·1 (479·4-1063·7) 14 days after booster dose, significantly higher than the GMT in the CoronaVac group (78·5 [60·5-101·7]; p<0·0001). INTERPRETATION: We found that a heterologous booster vaccine with an orally administered aerosolised Ad5-nCoV is safe and highly immunogenic in adults who have previously received two doses of CoronaVac as the primary series vaccination. FUNDING: National Natural Science Foundation of China and Jiangsu Provincial Key Research and Development Program.

3.
Complexity ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1832672

ABSTRACT

False information is always produced after the outbreak of major emergencies. Taking this into consideration, this paper discusses the behavior of multiple parties in relation to false information dissemination after major emergencies. First, a game model is constructed, using relevant knowledge of evolutionary game theory, between three parties: regulatory institutions, opinion leaders, and ordinary Internet users. Second, the model equations are solved, and the evolutionary stability strategies of each game party under different circumstances are analyzed. Third, a numerical simulation is applied to the evolutionary trends under different strategy combinations with varying parameters. The results show that the probability of each game party making ideal decisions is positively correlated with the degree of punishment imposed by regulatory institutions on opinion leaders who release false information, the reward provided by regulatory institutions on opinion leaders who release positive information, the degree of participation and satisfaction gained by Internet users in adopting positive information, the richness of authentic content released by opinion leaders, and the psychological identification of Internet users with opinion leaders. Meanwhile, the probability of each game party making ideal decisions is negatively correlated with investigation and evidence collection costs borne by opinion leaders who release positive information, the additional income for opinion leaders who have false information adopted by Internet users, the costs of Internet users’ time and energy when they adopt information released by opinion leaders, and the costs of independently judging the accuracy of information by Internet users.

4.
J Healthc Eng ; 2022: 9248674, 2022.
Article in English | MEDLINE | ID: covidwho-1822117

ABSTRACT

The first reported case of coronavirus disease 2019 (COVID-19) occurred in Wuhan, Hubei, China. Thereafter, it spread through China and worldwide in only a few months, reaching a pandemic level. It can cause severe respiratory illnesses such as pneumonia and lung failure. Since the onset of the disease, the rapid response and intervention of traditional Chinese medicine (TCM) have played a significant role in the effective control of the epidemic. Yinqiaosan (YQS) was used to treat COVID-19 pneumonia, with good curative effects. However, a systematic overview of its active compounds and the therapeutic mechanisms underlying its action has yet to be performed. The purpose of the current study is to explore the compounds and mechanism of YQS in treating COVID-19 pneumonia using system pharmacology. A system pharmacology method involving drug-likeness assessment, oral bioavailability forecasting, virtual docking, and network analysis was applied to estimate the active compounds, hub targets, and key pathways of YQS in the treatment of COVID-19 pneumonia. With this method, 117 active compounds were successfully identified in YQS, and 77 potential targets were obtained from the targets of 95 compounds and COVID-19 pneumonia. The results show that YQS may act in treating COVID-19 pneumonia and its complications (atherosclerosis and nephropathy) through Kaposi sarcoma-related herpesvirus infection and the AGE-RAGE signaling pathway in diabetic complications and pathways in cancer. We distinguished the hub molecular targets within pathways such as TNF, GAPDH, MAPK3, MAPK1, EGFR, CASP3, MAPK8, mTOR, IL-2, and MAPK14. Five of the more highly active compounds (acacetin, kaempferol, luteolin, naringenin, and quercetin) have anti-inflammatory and antioxidative properties. In summary, by introducing a systematic network pharmacology method, our research perfectly forecasts the active compounds, potential targets, and key pathways of YQS applied to COVID-19 and helps to comprehensively clarify its mechanism of action.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Anti-Inflammatory Agents , COVID-19/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional
5.
Comput Intell Neurosci ; 2022: 4144073, 2022.
Article in English | MEDLINE | ID: covidwho-1807687

ABSTRACT

According to Dunning's eclectic theory, the location advantages play a key role in international investment mode choice, in which the country relations are important determinants. In some previous studies, the country relations and another bilateral factor, the country distance, are often confused, which can result in the inconsistency of conclusions. And excepting political factors, the economic dependence and other relations are insufficiently considered in the literature. This article makes a distinction between relation and distance, and puts forward a simplified analytical framework, the indicator system, and some quantitative methods for country relations. The indicators, including political, economic, and social factors, can better satisfy the horizontal analysis of the outbound investment. The economic and social indicators are determined by the magnitude of interaction as well as the share in the home country, and hence, the evaluation results can reflect the differences between the two countries. Finally, by evaluating the relations of other BRICS countries with China, the rationality is illustrated.


Subject(s)
Internationality , Investments , China
6.
Front Immunol ; 13: 770982, 2022.
Article in English | MEDLINE | ID: covidwho-1775662

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike protein (S) of SARS-CoV-2 is a major target for diagnosis and vaccine development because of its essential role in viral infection and host immunity. Currently, time-dependent responses of humoral immune system against various S protein epitopes are poorly understood. In this study, enzyme-linked immunosorbent assay (ELISA), peptide microarray, and antibody binding epitope mapping (AbMap) techniques were used to systematically analyze the dynamic changes of humoral immune responses against the S protein in a small cohort of moderate COVID-19 patients who were hospitalized for approximately two months after symptom onset. Recombinant truncated S proteins, target S peptides, and random peptides were used as antigens in the analyses. The assays demonstrated the dynamic IgM- and IgG recognition and reactivity against various S protein epitopes with patient-dependent patterns. Comprehensive analysis of epitope distribution along the spike gene sequence and spatial structure of the homotrimer S protein demonstrated that most IgM- and IgG-reactive peptides were clustered into similar genomic regions and were located at accessible domains. Seven S peptides were generally recognized by IgG antibodies derived from serum samples of all COVID-19 patients. The dynamic immune recognition signals from these seven S peptides were comparable to those of the entire S protein or truncated S1 protein. This suggested that the humoral immune system recognized few conserved S protein epitopes in most COVID-19 patients during the entire duration of humoral immune response after symptom onset. Furthermore, in this cohort, individual patients demonstrated stable immune recognition to certain S protein epitopes throughout their hospitalization period. Therefore, the dynamic characteristics of humoral immune responses to S protein have provided valuable information for accurate diagnosis and immunotherapy of COVID-19 patients.


Subject(s)
COVID-19 , Antibodies, Viral , Epitopes , Humans , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Signal Transduct Target Ther ; 7(1): 61, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1758178

ABSTRACT

Variants are globally emerging very quickly following pandemic prototypic SARS-CoV-2. To evaluate the cross-protection of prototypic SARS-CoV-2 vaccine against its variants, we vaccinated rhesus monkeys with three doses of prototypic SARS-CoV-2 inactivated vaccine, followed by challenging with emerging SARS-CoV-2 variants of concern (VOCs). These vaccinated animals produced neutralizing antibodies against Alpha, Beta, Delta, and Omicron variants, although there were certain declinations of geometric mean titer (GMT) as compared with prototypic SARS-CoV-2. Of note, in vivo this prototypic vaccine not only reduced the viral loads in nasal, throat and anal swabs, pulmonary tissues, but also improved the pathological changes in the lung infected by variants of Alpha, Beta, and Delta. In summary, the prototypic SARS-CoV-2 inactivated vaccine in this study protected against VOCs to certain extension, which is of great significance for prevention and control of COVID-19.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Cross Protection , SARS-CoV-2/drug effects , Vaccination/methods , Vaccines, Inactivated/administration & dosage , Anal Canal/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Humans , Immunogenicity, Vaccine , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pharynx/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Load/drug effects
8.
J Geriatr Psychiatry Neurol ; 35(2): 182-195, 2022 03.
Article in English | MEDLINE | ID: covidwho-1731431

ABSTRACT

Background: Estimating the prevalence of depressive and anxiety symptoms among older adults with different health conditions can inform mental health services for this population during the corona virus disease-2019 (COVID-19) pandemic. Method: A search of 12 scientific databases identified 17 studies with 11,237 Chinese older adults who were infected by COVID-19, were generally healthy, or had chronic illnesses. Meta-analysis was used to estimate the overall prevalence of depressive and anxiety symptoms in these three groups. Assessment criteria, region, and time phase of the pandemic were tested as sources of heterogeneity. Results: With an average risk of bias score of 6.71 (range = 6-8), the majority of included studies employed appropriate statistical methods, used validated measurement tools, and had adequate response rates; however, they might have deficiencies in sample frame, sampling method, and sample size. Within the COVID-19, general, and chronic illness groups, the prevalence of depressive symptoms was 27%, 26%, and 61%, respectively, and the prevalence of anxiety symptoms was 14%, 23%, and 85%, respectively. Among generally healthy older adults, anxiety was more prevalent during the Phase 2 (March-April 2020) of the pandemic compared with other time phases. Conclusions: The results have implications for addressing the mental health problems of Chinese older adults, especially those with chronic illnesses, during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Aged , Anxiety/epidemiology , Anxiety/psychology , COVID-19/epidemiology , China/epidemiology , Depression/epidemiology , Depression/psychology , Humans , Prevalence , SARS-CoV-2
9.
Chin Med J (Engl) ; 133(9): 1051-1056, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-1722622

ABSTRACT

BACKGROUND: Medicines for the treatment of 2019-novel coronavirus (2019-nCoV) infections are urgently needed. However, drug screening using live 2019-nCoV requires high-level biosafety facilities, which imposes an obstacle for those institutions without such facilities or 2019-nCoV. This study aims to repurpose the clinically approved drugs for the treatment of coronavirus disease 2019 (COVID-19) in a 2019-nCoV-related coronavirus model. METHODS: A 2019-nCoV-related pangolin coronavirus GX_P2V/pangolin/2017/Guangxi was described. Whether GX_P2V uses angiotensin-converting enzyme 2 (ACE2) as the cell receptor was investigated by using small interfering RNA (siRNA)-mediated silencing of ACE2. The pangolin coronavirus model was used to identify drug candidates for treating 2019-nCoV infection. Two libraries of 2406 clinically approved drugs were screened for their ability to inhibit cytopathic effects on Vero E6 cells by GX_P2V infection. The anti-viral activities and anti-viral mechanisms of potential drugs were further investigated. Viral yields of RNAs and infectious particles were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and plaque assay, respectively. RESULTS: The spike protein of coronavirus GX_P2V shares 92.2% amino acid identity with that of 2019-nCoV isolate Wuhan-hu-1, and uses ACE2 as the receptor for infection just like 2019-nCoV. Three drugs, including cepharanthine (CEP), selamectin, and mefloquine hydrochloride, exhibited complete inhibition of cytopathic effects in cell culture at 10 µmol/L. CEP demonstrated the most potent inhibition of GX_P2V infection, with a concentration for 50% of maximal effect [EC50] of 0.98 µmol/L. The viral RNA yield in cells treated with 10 µmol/L CEP was 15,393-fold lower than in cells without CEP treatment ([6.48 ±â€Š0.02] × 10vs. 1.00 ±â€Š0.12, t = 150.38, P < 0.001) at 72 h post-infection (p.i.). Plaque assays found no production of live viruses in media containing 10 µmol/L CEP at 48 h p.i. Furthermore, we found CEP had potent anti-viral activities against both viral entry (0.46 ±â€Š0.12, vs.1.00 ±â€Š0.37, t = 2.42, P < 0.05) and viral replication ([6.18 ±â€Š0.95] × 10vs. 1.00 ±â€Š0.43, t = 3.98, P < 0.05). CONCLUSIONS: Our pangolin coronavirus GX_P2V is a workable model for 2019-nCoV research. CEP, selamectin, and mefloquine hydrochloride are potential drugs for treating 2019-nCoV infection. Our results strongly suggest that CEP is a wide-spectrum inhibitor of pan-betacoronavirus, and further study of CEP for treatment of 2019-nCoV infection is warranted.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Cell Line , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Drug Approval , Humans , Pandemics , Pneumonia, Viral/diagnosis , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load
10.
Front Immunol ; 13: 798538, 2022.
Article in English | MEDLINE | ID: covidwho-1699559

ABSTRACT

Existing evidence demonstrates that coronavirus disease 2019 (COVID-19) leads to psychiatric illness, despite its main clinical manifestations affecting the respiratory system. People with mental disorders are more susceptible to COVID-19 than individuals without coexisting mental health disorders, with significantly higher rates of severe illness and mortality in this population. The incidence of new psychiatric diagnoses after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also remarkably high. SARS-CoV-2 has been reported to use angiotensin-converting enzyme-2 (ACE2) as a receptor for infecting susceptible cells and is expressed in various tissues, including brain tissue. Thus, there is an urgent need to investigate the mechanism linking psychiatric disorders to COVID-19. Using a data set of peripheral blood cells from patients with COVID-19, we compared this to data sets of whole blood collected from patients with psychiatric disorders and used bioinformatics and systems biology approaches to identify genetic links. We found a large number of overlapping immune-related genes between patients infected with SARS-CoV-2 and differentially expressed genes of bipolar disorder (BD), schizophrenia (SZ), and late-onset major depressive disorder (LOD). Many pathways closely related to inflammatory responses, such as MAPK, PPAR, and TGF-ß signaling pathways, were observed by enrichment analysis of common differentially expressed genes (DEGs). We also performed a comprehensive analysis of protein-protein interaction network and gene regulation networks. Chemical-protein interaction networks and drug prediction were used to screen potential pharmacologic therapies. We hope that by elucidating the relationship between the pathogenetic processes and genetic mechanisms of infection with SARS-CoV-2 with psychiatric disorders, it will lead to innovative strategies for future research and treatment of psychiatric disorders linked to COVID-19.


Subject(s)
Bipolar Disorder/genetics , COVID-19/pathology , Depressive Disorder, Major/genetics , Mental Disorders/epidemiology , Protein Interaction Maps/genetics , Schizophrenia/genetics , COVID-19/epidemiology , Comorbidity , Gene Expression Profiling , Humans , Mental Disorders/genetics , SARS-CoV-2/immunology , Severity of Illness Index
11.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315193

ABSTRACT

Objective: To evaluate the role of high-resolution computed tomography (HRCT) in the diagnosis of 2019 novel coronavirus (2019-nCoV) pneumonia and to provide experience in the early detection and diagnosis of 2019-nCoV pneumonia. Methods: : 72 patients confirmed to be infected with 2019-nCoV from multiple medical centers in western China were retrospectively analyzed, including epidemiologic characteristics, clinical manifestations, laboratory findings and HRCT chest features. Results: : All patients had lung parenchymal abnormalities on HRCT scans, which were mostly multifocal in both lungs and asymmetric in all patients, and were mostly in the peripheral or subpleural lung regions in 52 patients (72.22%), in the central lung regions in sixteen (22.22%), and in both lungs, with "white lung "manifestations in four (5.56%). Subpleural multifocal consolidation was predominant abnormality in 38 patients (52.78%). Ground-glass opacity was seen in 34 patients (47.22%). Interlobular septal thickening was found in 18patients, of which eight had only generally mild thickening with no zonal predominance. Reticulation was seen in 8 patients (11.11%), in all of whom it was mild and randomly distributed. In addition, both lungs of 28 patients had two or three CT imaging features. Out of these 72 patients, 36 were diagnosed as early stage, 32 patients as progressive stage and 4 patient as severe stage pneumonia. Moreover, the diagnostic accuracy of HRCT features combined with epidemiological history was not significantly different from the detection of viral nucleic acid (all P >0.05). Conclusion: The HRCT features of 2019-nCoV pneumonia are characteristic to a certain degree, which when combined with epidemiological history yield high clinical value in the early detection and diagnosis of 2019-nCoV pneumonia.Authors Hong-Wei Li, Li-Hua Zhuo, Gao-Wu Yan contributed equally to this work.

12.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315048

ABSTRACT

The emergence of the coronavirus disease 2019 (COVID-19) caused a large-scale outbreak and has rapidly spread across China and multiple countries. We reported countermeasures in infection control for diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) infection and the experiences of point of care diagnostics and medical quarantine for presumed SARS-CoV-2-infected subjects. We conducted a retrospective cohort study on subjects came to Chung Shan Medical University Hospital with suspicion of SARS-CoV-2 infection during January to March, 2020. We performed the real-time reverse-transcription polymerase chain reaction testing (rRT-PCR) for SARS-CoV-2-infection and reported the results of testing and treatment. A total of 212 participants were enrolled due to suspicion of SARS-CoV-2 infection. Five of those were confirmed COVID-19 cases after monitoring for a period of 14 days and were cured. The time to rRT-PCR test conversion after treatment is variate. The infection control measures of home quarantine and mandatory medical quarantine combined with rapid diagnosis seem to postpone the speed of transmission of SARS-CoV-2 infection at once in Taiwan. Due to lack of vaccination and confirmed antiviral therapy, it is important to strictly abide by the infection control measures.

13.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-313391

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads rapidly and has attracted worldwide attention. Methods: : To improve the forecast accuracy and investigate the spread of SARS-CoV-2, we constructed four mathematical models to numerically estimate the spread of SARS-CoV-2 and the efficacy of eradication strategies. Results: : Using the Susceptible-Exposed-Infected-Removed (SEIR) model, and including measures such as city closures and extended leave policies implemented by the Chinese government that effectively reduced the β value, we estimated that the β value and basic transmission number, R 0 , of SARS-CoV-2 was 0.476/6.66 in Wuhan, 0.359/5.03 in Korea, and 0.400/5.60 in Italy. Considering medicine and vaccines, an advanced model demonstrated that the emergence of vaccines would greatly slow the spread of the virus. Our model predicted that 100,000 people would become infected assuming that the isolation rate α in Wuhan was 0.30. If quarantine measures were taken from March 10, 2020, and the quarantine rate of α was also 0.3, then the final number of infected people was predicted to be 11,426 in South Korea and 147,142 in Italy. Conclusions: : Our mathematical models indicate that SARS-CoV-2 eradication depends on systematic planning, effective hospital isolation, and SARS-CoV-2 vaccination, and some measures including city closures and leave policies should be implemented to ensure SARS-CoV-2 eradication.

14.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-310879

ABSTRACT

Objective: We aimed to describe the features of 220 nonemergency (mild or common type) COVID-19 patients from a shelter hospital, as well as evaluate the efficiency of antiviral drug, Arbidol in their disease progressions. Methods: . Basic clinical characteristics were described and the efficacy of Arbidol was evaluated based on gender, age, maximum body temperature of the patients. Results: . Basically, males had a higher risk of fever and more onset symptoms than females. Arbidol could accelerate fever recovery and viral clearance in respiratory specimens, particularly in males. Arbidol also contributed to shorter hospital stay without obvious adverse reactions. Conclusions: . In the retrospective COVID-19 cohort, gender was one of the important factors affecting patient's conditions. Arbidol showed several beneficial effects in these patients, especially in males. This study brought more researches enlightenment in understanding the emerging infectious disease.

15.
Nat Med ; 26(6): 845-848, 2020 06.
Article in English | MEDLINE | ID: covidwho-1641979

ABSTRACT

We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.


Subject(s)
Antibodies, Viral/blood , Antibody Formation/drug effects , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Antibody Formation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
16.
Oxid Med Cell Longev ; 2022: 5397733, 2022.
Article in English | MEDLINE | ID: covidwho-1635531

ABSTRACT

The infection of coronavirus disease (COVID-19) seriously threatens human life. It is urgent to generate effective and safe specific antibodies (Abs) against the pathogenic elements of COVID-19. Mice were immunized with SARS-CoV-2 spike protein antigens: S ectodomain-1 (CoV, in short) mixed in Alum adjuvant for 2 times and boosted with CoV weekly for 6 times. A portion of mice were treated with Maotai liquor (MTL, in short) or/and heat stress (HS) together with CoV boosting. We observed that the anti-CoV Ab was successfully induced in mice that received the CoV/Alum immunization for 2 times. However, upon boosting with CoV, the CoV Ab production diminished progressively; spleen CoV Ab-producing plasma cell counts reduced, in which substantial CoV-specific Ab-producing plasma cells (sPC) were apoptotic. Apparent oxidative stress signs were observed in sPCs; the results were reproduced by exposing sPCs to CoV in the culture. The presence of MTL or/and HS prevented the CoV-induced oxidative stress in sPCs and promoted and stabilized the CoV Ab production in mice in re-exposure to CoV. In summary, CoV/Alum immunization can successfully induce CoV Ab production in mice that declines upon reexposure to CoV. Concurrent administration of MTL/HS stabilizes and promotes the CoV Ab production in mice.


Subject(s)
Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Apoptosis , COVID-19/immunology , Plasma Cells/immunology , SARS-CoV-2/physiology , Superoxide Dismutase-1/physiology , Adjuvants, Immunologic , Alcoholic Beverages , Alum Compounds , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/enzymology , COVID-19 Vaccines/immunology , Heat-Shock Response , Immunization, Secondary , Immunogenicity, Vaccine , Janus Kinase 2/physiology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Plasma Cells/drug effects , Plasma Cells/pathology , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/physiology , Signal Transduction , Specific Pathogen-Free Organisms , Spike Glycoprotein, Coronavirus/immunology , Vaccination
17.
Biosens Bioelectron ; 202: 113974, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1611633

ABSTRACT

Rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody can provide immunological evidence in addition to nucleic acid test for the early diagnosis and on-site screening of coronavirus disease 2019 (COVID-19). All-solid-state biosensor capable of rapid, quantitative SARS-CoV-2 antibody testing is still lacking. Herein, we propose an electronic labelling strategy of protein molecules and demonstrate SARS-CoV-2 protein biosensor employing colloidal quantum dots (CQDs)-modified electrode. The feature current peak corresponding to the specific binding reaction of SARS-CoV-2 antigen and antibody proteins was observed for the first time. The unique charging and discharging effect depending on the alternating voltage applied was ascribed to the quantum confinement, Coulomb blockade and quantum tunneling effects of quantum dots. CQDs-modified electrode could recognize the specific binding reaction between antigen and antibody and then transduce it into significant electrical current. In the case of serum specimens from COVID-19 patient samples, the all-solid-state protein biosensor provides quantitative analysis of SARS-CoV-2 antibody with correlation coefficient of 93.8% compared to enzyme-linked immunosorbent assay (ELISA) results. It discriminates patient and normal samples with accuracy of about 90%. The results could be read within 1 min by handheld testing system prototype. The sensitive and specific protein biosensor combines the advantages of rapidity, accuracy, and convenience, facilitating the implement of low-cost, high-throughput immunological diagnostic technique for clinical lab, point-of-care testing (POCT) as well as home-use test.


Subject(s)
Biosensing Techniques , COVID-19 , Quantum Dots , Biosensing Techniques/methods , Electrodes , Humans , SARS-CoV-2 , Sensitivity and Specificity
18.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296091

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is highly contagious and causes lymphocytopenia, but the underlying mechanisms are poorly understood. We demonstrate here that heterotypic cell-in-cell structures with lymphocytes inside multinucleate syncytia are prevalent in the lung tissues of coronavirus disease 2019 (COVID-19) patients. These unique cellular structures are a direct result of SARS-CoV-2 infection, as the expression of the SARS-CoV-2 spike glycoprotein is sufficient to induce a rapid (approximately 45.1 nm/sec) membrane fusion to produce syncytium, which could readily internalize multiple lines of lymphocytes to form typical cell-in-cell structures, remarkably leading to the death of internalized cells. This membrane fusion is dictated by a bi-arginine motif within the polybasic S1/S2 cleavage site, which is frequently present in the surface glycoprotein of most highly contagious viruses. Moreover, candidate anti-viral drugs could efficiently inhibit spike glycoprotein processing, membrane fusion, and cell-in-cell formation. Together, we delineate a molecular and cellular rationale for SARS-CoV-2 pathogenesis and identify novel targets for COVID-19 therapy.

19.
Chin Med ; 16(1): 130, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1551216

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic is still spread and has made a severe public health threat around the world. To improve disease progression, emerging Chinese herbal compounds were used in clinical practice and some agents have proven beneficial in treating COVID-19. Here, the relevant literature from basic researches to clinical application were identified and comprehensively assessed. A variety of Chinese herbal compounds have been reported to be effective in improving symptoms and outcomes in patients with COVID-19, particularly together with routine treatment strategy. The pharmacological activities were mainly attributed to the relief of clinical symptoms, inhibition of cytokine storm, and improvement of organ function. Besides, the development of novel antiviral drugs from medicinal herbs were further discussed. The updated laboratory and clinical studies provided the evidence of Chinese herbal compounds such as Lianhua Qingwen prescription, Shufeng Jiedu prescription, and Qingfei Paidu Tang for the relief of COVID-19. However, both of the randomized controlled trials and real world researches need to be done for supporting the evidence including the efficacy and safety in fighting COVID-19.

20.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293601

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is highly contagious and causes lymphocytopenia, but the underlying mechanisms are poorly understood. We demonstrate here that heterotypic cell-in-cell structures with lymphocytes inside multinucleate syncytia are prevalent in the lung tissues of coronavirus disease 2019 (COVID-19) patients. These unique cellular structures are a direct result of SARS-CoV-2 infection, as the expression of the SARS-CoV-2 spike glycoprotein is sufficient to induce a rapid (approximately 45.1 nm/sec) membrane fusion to produce syncytium, which could readily internalize multiple lines of lymphocytes to form typical cell-in-cell structures, remarkably leading to the death of internalized cells. This membrane fusion is dictated by a bi-arginine motif within the polybasic S1/S2 cleavage site, which is frequently present in the surface glycoprotein of most highly contagious viruses. Moreover, candidate anti-viral drugs could efficiently inhibit spike glycoprotein processing, membrane fusion, and cell-in-cell formation. Together, we delineate a molecular and cellular rationale for SARS-CoV-2 pathogenesis and identify novel targets for COVID-19 therapy.

SELECTION OF CITATIONS
SEARCH DETAIL