Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: covidwho-20244460

ABSTRACT

The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a critical role in the proteolytic processing of viral polyproteins and the dysregulation of the host immune response, providing a promising therapeutic target. Here, we report the structure-guide design of novel peptidomimetic inhibitors covalently targeting SARS-CoV-2 PLpro. The resulting inhibitors demonstrate submicromolar potency in the enzymatic assay (IC50 = 0.23 µM) and significant inhibition of SARS-CoV-2 PLpro in the HEK293T cells using a cell-based protease assay (EC50 = 3.61 µM). Moreover, an X-ray crystal structure of SARS-CoV-2 PLpro in complex with compound 2 confirms the covalent binding of the inhibitor to the catalytic residue cysteine 111 (C111) and emphasizes the importance of interactions with tyrosine 268 (Y268). Together, our findings reveal a new scaffold of SARS-CoV-2 PLpro inhibitors and provide an attractive starting point for further optimization.


Subject(s)
COVID-19 , Peptidomimetics , Humans , Peptidomimetics/pharmacology , HEK293 Cells , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
2.
Chem Sci ; 14(18): 4681-4696, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2319196

ABSTRACT

Papain-like protease (PLpro) is a promising therapeutic target against SARS-CoV-2, but its restricted S1/S2 subsites pose an obstacle in developing active site-directed inhibitors. We have recently identified C270 as a novel covalent allosteric site for SARS-CoV-2 PLpro inhibitors. Here we present a theoretical investigation of the proteolysis reaction catalyzed by the wild-type SARS-CoV-2 PLpro as well as the C270R mutant. Enhanced sampling MD simulations were first performed to explore the influence of C270R mutation on the protease dynamics, and sampled thermodynamically favorable conformations were then submitted to MM/PBSA and QM/MM MD simulations for thorough characterization of the protease-substrate binding and covalent reactions. The disclosed proteolysis mechanism of PLpro, as characterized by the occurrence of proton transfer from the catalytic C111 to H272 prior to the substrate binding and with deacylation being the rate-determining step of the whole proteolysis process, is not completely identical to that of the 3C-like protease, another key cysteine protease of coronaviruses. The C270R mutation alters the structural dynamics of the BL2 loop that indirectly impairs the catalytic function of H272 and reduces the binding of the substrate with the protease, ultimately showing an inhibitory effect on PLpro. Together, these results provide a comprehensive understanding at the atomic level of the key aspects of SARS-CoV-2 PLpro proteolysis, including the catalytic activity allosterically regulated by C270 modification, which is crucial to the follow-up inhibitor design and development.

3.
Adv Sci (Weinh) ; 8(18): e2101498, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316192

ABSTRACT

Acute kidney injury (AKI), as a common oxidative stress-related renal disease, causes high mortality in clinics annually, and many other clinical diseases, including the pandemic COVID-19, have a high potential to cause AKI, yet only rehydration, renal dialysis, and other supportive therapies are available for AKI in the clinics. Nanotechnology-mediated antioxidant therapy represents a promising therapeutic strategy for AKI treatment. However, current enzyme-mimicking nanoantioxidants show poor biocompatibility and biodegradability, as well as non-specific ROS level regulation, further potentially causing deleterious adverse effects. Herein, the authors report a novel non-enzymatic antioxidant strategy based on ultrathin Ti3 C2 -PVP nanosheets (TPNS) with excellent biocompatibility and great chemical reactivity toward multiple ROS for AKI treatment. These TPNS nanosheets exhibit enzyme/ROS-triggered biodegradability and broad-spectrum ROS scavenging ability through the readily occurring redox reaction between Ti3 C2 and various ROS, as verified by theoretical calculations. Furthermore, both in vivo and in vitro experiments demonstrate that TPNS can serve as efficient antioxidant platforms to scavenge the overexpressed ROS and subsequently suppress oxidative stress-induced inflammatory response through inhibition of NF-κB signal pathway for AKI treatment. This study highlights a new type of therapeutic agent, that is, the redox-mediated non-enzymatic antioxidant MXene nanoplatforms in treatment of AKI and other ROS-associated diseases.


Subject(s)
Acute Kidney Injury/drug therapy , Antioxidants/pharmacology , Oxidation-Reduction/drug effects , Polyvinyls/pharmacology , Pyrrolidines/pharmacology , Titanium/pharmacology , Acute Kidney Injury/metabolism , Apoptosis/drug effects , Humans , Kidney/drug effects , Kidney/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL