Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add filters

Year range
1.
Nat Med ; 26(6): 845-848, 2020 06.
Article | MEDLINE | ID: covidwho-1641979

ABSTRACT

We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT-PCR results and for the identification of asymptomatic infections.


Subject(s)
Antibodies, Viral/blood , Antibody Formation/drug effects , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Antibody Formation/immunology , Antiviral Agents/therapeutic use , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
2.
Cardiovasc Ultrasound ; 20(1): 2, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1633049

ABSTRACT

BACKGROUND: This study aimed to investigate the relationship between echocardiography results and lung ultrasound score (LUS) in coronavirus disease 2019 (COVID-19) pneumonia patients and evaluate the impact of the combined application of these techniques in the evaluation of COVID-19 pneumonia. METHODS: Hospitalized COVID-19 pneumonia patients who underwent daily lung ultrasound and echocardiography were included in this study. Patients with tricuspid regurgitation within three days of admission were enrolled. Moreover, the correlation and differences between their pulmonary artery pressure (PAP) and LUS on days 3, 8, and 13 were analyzed. The inner diameter of the pulmonary artery root as well as the size of the atria and ventricles were also considered. RESULTS: The PAP on days 3, 8, and 13 of hospitalization was positively correlated with the LUS (r = 0.448, p = 0.003; r = 0.738, p < 0.001; r = 0.325, p = 0.036, respectively). On day 8, the values of both PAP and LUS were higher than on days 3 and 13 (p < 0.01). Similarly, PAP and LUS were significantly increased in 92.9% (39/42) and 90.5% (38/42) of patients, respectively, and at least one of these two values was positive in 97.6% (41/42) of cases. The inner diameters of the right atrium, right ventricle, and pulmonary artery also differed significantly from their corresponding values on days 3 and 13 (p < 0.05). CONCLUSIONS: PAP is positively correlated with LUS in COVID-19 pneumonia. The two values could be combined for a more precise assessment of disease progression and recovery status.


Subject(s)
COVID-19 , Pneumonia , Echocardiography , Humans , Lung/diagnostic imaging , Pilot Projects , Pneumonia/diagnostic imaging , SARS-CoV-2 , Ultrasonography
3.
Frontiers in public health ; 9, 2021.
Article in English | EuropePMC | ID: covidwho-1602671

ABSTRACT

Personal protective behaviors of healthcare workers (HCWs) and dynamic changes in them are known to play a major role in the hospital transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, 1,499 HCWs in Chinese hospitals completed an online survey about their knowledge on SARS-CoV-2 transmission and their personal protective behaviors before and after coronavirus disease 2019 (COVID-19) vaccination. Of all the respondents, 89% were vaccinated at the time of the survey and 96% believed that the vaccine was effective or highly effective. Further, 88% of the vaccinated HCWs expressed that they would get revaccinated if the vaccination failed. Compared with HCWs with a lower education level, those with a higher education level had less fear of being infected with SARS-CoV-2 and reported a lower negative impact of the pandemic on how they treated patients. Physicians and nurses were willing to believe that short-range airborne and long-range fomite are possible transmission routes. HCWs with a higher education level had a better knowledge of COVID-19 but worse personal protective behaviors. The fact that HCWs with a longer work experience had worse personal protective behaviors showed that HCWs gradually relax their personal protective behaviors over time. Moreover, vaccination reduced the negative effects of the COVID-19 pandemic on how the HCWs treated patients. Importantly, the survey revealed that after vaccination, HCWs in China did not relax their personal protective behaviors, and it may bring a low potential risk for following waves of variant virus (e.g., delta).

4.
World J Emerg Med ; 12(4): 293-298, 2021.
Article in English | MEDLINE | ID: covidwho-1579976

ABSTRACT

BACKGROUND: The study aims to illustrate the clinical characteristics and development of septic shock in intensive care unit (ICU) patients confirmed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and to perform a comprehensive analysis of the association between septic shock and clinical outcomes in critically ill patients with coronavirus disease (COVID-19). METHODS: Patients confirmed with SARS-CoV-2 infection, who were admitted to the ICU of the Third People's Hospital of Shenzhen from January 1 to February 7, 2020, were enrolled. Clinical characteristics and outcomes were compared between patients with and without septic shock. RESULTS: In this study, 35 critically ill patients with COVID-19 were included. Among them, the median age was 64 years (interquartile range [IQR] 59-67 years), and 10 (28.4%) patients were female. The median ICU length of stay was 16 days (IQR 8-23 days). Three (8.6%) patients died during hospitalization. Nine (25.7%) patients developed septic shock in the ICU, and these patients had a significantly higher incidence of organ dysfunction and a worse prognosis than patients without septic shock. CONCLUSIONS: Septic shock is associated with a poor outcome in critically ill COVID-19 patients and is one of the hallmarks of the severity of patients receiving ICU care. A dysregulated immune response, uncontrolled inflammation, and coagulation disorders are strongly associated with the development and progression of COVID-19-related septic shock.

5.
Zhongguo Yaolixue yu Dulixue Zazhi = Chinese Journal of Pharmacology and Toxicology ; - (10):733, 2021.
Article in English | ProQuest Central | ID: covidwho-1564416

ABSTRACT

OBJECTIVE Human metapneumovirus(h MPV) is semblable to respiratory syncytial virus(RSV) which causes respiratory infections typically characterized by cough, runny nose, fever, and nasal congestion but sometimes progressing to bronchiolitis and pneumonia. Whereas, there is no corresponding drug to inhabit the virus. Studies of new compounds with potential anti-HMPV activity could produce clinical value. Chinese herbal medicine played a great role during COVID-19, therefore we choose some small molecular(JH001) extracted from botany to investigate therapeutic effect on h MPV and the underlying mechanisms. METHODS In this study, 16 HBE cells were used as a model to explore in vitro antiviral effect. Cytotoxicity assays were performed before the antiviral tests, cell viability of 16 HBE cells handled by different concentration of JH001 was estimated by Cell Counting Kit-8(CCK-8). Then RT-q PCR, immunofluorescence, and flow cytometer were used to test the viral titer after cells infected with h MPV. Eventually, 6-8 weeks mice were infected intranasally with 60 μL of h MPV, the control group was treated with 0.9% saline water, other groups were administered with JH001 and ribavirin, then the lung virus titer and protective effect in lung were judged. RESULTS The obtained JH001 exhibited no cytotoxicity to 16 HBE cells during 6.25-200 μmol · L-1. RT-QPCR demonstrated that JH001 showed obvious inhabitation to the viral replication and showed great significance compared with saline. And fluorescence exhibited distinct decrease of h MPV-N protein, flow cytometer results showed that MFI decrease evidently. Significant reduction of N-gene expression was observed in those mice treated with JH001 compared with saline group,which indicated that JH001 probably had protective and therapeutic effect on viral replication. CONCLUSION This study illustrated that JH001 might be a promising option for small molecular against h MPV and JH001 might be worthy of further development and used as a potential therapeutic strategy for other respiratory viruses in the future.

6.
Front Microbiol ; 12: 770656, 2021.
Article in English | MEDLINE | ID: covidwho-1518506

ABSTRACT

In the past two decades, coronavirus (CoV) has emerged frequently in the population. Three CoVs (SARS-CoV, MERS-CoV, SARS-CoV-2) have been identified as highly pathogenic human coronaviruses (HP-hCoVs). Particularly, the ongoing COVID-19 pandemic caused by SARS-CoV-2 warns that HP-hCoVs present a high risk to human health. Like other viruses, HP-hCoVs interact with their host cells in sophisticated manners for infection and pathogenesis. Here, we reviewed the current knowledge about the interference of HP-hCoVs in multiple cellular processes and their impacts on viral infection. HP-hCoVs employed various strategies to suppress and evade from immune response, including shielding viral RNA from recognition by pattern recognition receptors (PRRs), impairing IFN-I production, blocking the downstream pathways of IFN-I, and other evasion strategies. This summary provides a comprehensive view of the interplay between HP-hCoVs and the host cells, which is helpful to understand the mechanism of viral pathogenesis and develop antiviral therapies.

7.
World J Clin Cases ; 9(28): 8388-8403, 2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1513223

ABSTRACT

BACKGROUND: The novel coronavirus disease 2019 (COVID-19) pandemic is a global threat caused by the severe acute respiratory syndrome coronavirus-2. AIM: To develop and validate a risk stratification tool for the early prediction of intensive care unit (ICU) admission among COVID-19 patients at hospital admission. METHODS: The training cohort included COVID-19 patients admitted to the Wuhan Third Hospital. We selected 13 of 65 baseline laboratory results to assess ICU admission risk, which were used to develop a risk prediction model with the random forest (RF) algorithm. A nomogram for the logistic regression model was built based on six selected variables. The predicted models were carefully calibrated, and the predictive performance was evaluated and compared with two previously published models. RESULTS: There were 681 and 296 patients in the training and validation cohorts, respectively. The patients in the training cohort were older than those in the validation cohort (median age: 63.0 vs 49.0 years, P < 0.001), and the percentages of male gender were similar (49.6% vs 49.3%, P = 0.958). The top predictors selected in the RF model were neutrophil-to-lymphocyte ratio, age, lactate dehydrogenase, C-reactive protein, creatinine, D-dimer, albumin, procalcitonin, glucose, platelet, total bilirubin, lactate and creatine kinase. The accuracy, sensitivity and specificity for the RF model were 91%, 88% and 93%, respectively, higher than those for the logistic regression model. The area under the receiver operating characteristic curve of our model was much better than those of two other published methods (0.90 vs 0.82 and 0.75). Model A underestimated risk of ICU admission in patients with a predicted risk less than 30%, whereas the RF risk score demonstrated excellent ability to categorize patients into different risk strata. Our predictive model provided a larger standardized net benefit across the major high-risk range compared with model A. CONCLUSION: Our model can identify ICU admission risk in COVID-19 patients at admission, who can then receive prompt care, thus improving medical resource allocation.

8.
Clin Lab ; 67(11)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1513105

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that brings a significant public health challenge. A rapid and simple method is necessary for testing suspected samples and screening the population. METHODS: To better monitor sample effectiveness, this study described a method to detect nucleocapsid protein gene (N gene) of SARS-CoV-2 and human ACTB gene employing real-time duplex reverse transcription multienzyme isothermal rapid amplification (RT-MIRA) assays. RESULTS: The established real-time duplex RT-MIRA assays showed that no cross-reactions were observed to other pathogens and the detection limit was 100 copies/reaction. Using simulated clinical samples to test established assays further and the amplification process took no more than 20 minutes at 42°C. CONCLUSIONS: RT-MIRA assays are faster and easier than reverse transcription real-time polymerase chain reaction (RT-PCR). It is expected to be further optimized and evaluated in the detection of SARS-CoV-2 confirmed cases.


Subject(s)
COVID-19 , Reverse Transcription , Humans , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Sensitivity and Specificity
9.
Int J Gen Med ; 14: 7337-7348, 2021.
Article in English | MEDLINE | ID: covidwho-1504988

ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19) was associated with a higher risk of arrhythmia in infected patients. However, there are no reports about the effect of the ongoing pandemic on arrhythmias in the non-infected population. We measured the arrhythmia burden in a non-infected population with cardiac implantable devices. Methods: The arrhythmia burden during the COVID-19 pandemic was compared to a 6-month interval in the pre-COVID-19 period. The COVID-19 pandemic was divided into high-risk (17 January 2020 to 16 March 2020) and low-risk periods (17 March 2020 to 17 July 2020) according to whether there were locally infected patients. Arrhythmia burdens were compared among the pre-COVID-19, high-risk, and low-risk periods. Results: A total of 219 patients with 1859 episodes were included. We observed a larger proportion of patients with atrial fibrillation (AF) during the COVID-19 pandemic (38.36% vs 26.03%, p = 0.006). There was not significantly more ventricular arrhythmia during the COVID period than the pre-COVID-19 period (p > 0.05). During the high-risk period, daily frequency of non-sustained ventricular tachycardia (NSVT) (0.0172, 0.0475 vs 0.0109, 0.0164, p < 0.05), atrial tachycardia (AT) (0.0345, 0.0518 vs 0.0164, 0.0219 p < 0.05) and AF (0.0345, 0.0432 vs 0.0164, 0.0186, p < 0.05) and daily duration of NSVT (0.1982, 0.2845 vs 0.0538, 0.1640 p < 0.05) were higher and longer than those in the pre-COVID-19 period. Regression modeling showed that the impact of COVID-19 pandemic lead to an increased onset of AF (odds ratio 2.465; p < 0.01). Patients with paroxysmal AF who had undergone a previous radiofrequency ablation had a lower burden of AF (incidence 21.43% vs 55.00%, P = 0.049, daily frequency 0.0000, 0.0027 vs 0.0000, 241.7978, P = 0.020) during the pandemic. Conclusion: The COVID-19 pandemic contributed to a higher burden of arrhythmias in non-infected patients. Patients would experience a lower burden of AF following radiofrequency ablation treatment, and this effect persisted during the pandemic.

11.
Int Health ; 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1434408

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has spurred an unprecedented paradigm shift to telemedicine across healthcare fields in order to limit exposure to the virus. At the West China Hospital of Sichuan University, telemedicine has been used to perform COVID-19-related tele-education to health professionals and the general population, as well as tele-diagnosis, online treatment and internet-based drug prescription and delivery. However, many older adults could not make appointments with doctors due to difficulty using the internet-based platform. Careful attention needs to be paid by future researchers and policymakers in order to mitigate barriers older adults face when using telemedicine.

12.
Cell Rep ; 37(2): 109822, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1433046

ABSTRACT

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/immunology , COVID-19/immunology , Cricetinae , Cryoelectron Microscopy/methods , Epitopes/immunology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Neutralization Tests , Protein Binding/physiology , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
13.
BMJ Open ; 11(9): e045454, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1398649

ABSTRACT

OBJECTIVES: This phenomenological study aimed to examine intensive care unit (ICU) nurses' experiences of caring for patients with COVID-19, and understand better their everyday experiences of patient' management in the ICU. DESIGN: A descriptive phenomenological research design was used. Individual interviews were conducted. The data were transcribed verbatim and analysed using Colaizzi's seven-step framework. SETTING: An ICU with 16 beds in a tertiary hospital in Wuhan, China. PARTICIPANTS: Nurses who had more than 1 year of experience and had provided care to patients with COVID-19 in ICU for more than 1 week were identified as participants. A total of 13 nurses were interviewed. RESULTS: An analysis of these significant statements yielded four distinct stages of feelings, thereby revealing the essence of this phenomenon. Worry about being infected and infecting family members was present across in all four stages. The themes associated with the four stages were as follows: initial contradictory feelings, quick adaption to the 'new working environment' in the first 1-2 weeks in the ICU, desperation after adaption, holding on and survive. CONCLUSIONS: The nurses reported distinct experiences of providing care to patients with COVID-19 in ICUs. Interventions, such as providing information about the disease, simulation training, emotional support and follow-up care, are needed to help nurses manage patients with COVID-19 and maintain nurses' health.


Subject(s)
COVID-19 , Nurses , Nursing Staff, Hospital , Humans , Intensive Care Units , Qualitative Research , SARS-CoV-2
14.
Emerg Microbes Infect ; 10(1): 1683-1690, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1341091

ABSTRACT

At the end of 2019, A new type of beta-CoV, SARS-CoV-2 emerged and triggered the COVID-19 pandemic, which spread overwhelmingly around the world in less than a year. However, the origin and direct ancestral viruses of SARS-CoV-2 remain unknown. RaTG13, a novel coronavirus found in bats in China's Yunnan Province, is the closest relative virus of the SARS-CoV-2 identified so far. In this study, a new SARS-CoV-2 related virus, provisionally named PrC31, was discovered in Yunnan province by retrospectively analyse bat next generation sequencing (NGS) data of intestinal samples collected in 2018. PrC31 shared 90.7% and 92.0% nucleotide identities to the genomes of SARS-CoV-2 and the bat SARSr-CoV ZC45, respectively. Sequence alignment of PrC31 showed that several genomic regions, especially orf1a and orf8 had the highest homology with those corresponding genomic regions of SARS-CoV-2 than any other related viruses. Phylogenetic analysis indicated that PrC31 shared a common ancestor with SARS-CoV-2 in evolutionary history. The differences between the PrC31 and SARS-CoV-2 genomes were mainly manifested in the spike genes. The amino acid homology between the receptor binding domains of PrC31 and SARS-CoV-2 was only 64.2%. Importantly, recombination analysis revealed that PrC31 underwent multiple complex recombination events (including three recombination breakpoints) involving the SARS-CoV and SARS-CoV-2 sub-lineages, indicating that PrC31 evolved from yet-to-be-identified intermediate recombination strains. Combined with previous studies, it is revealed that the beta-CoVs may possess a more complex recombination mechanism than we thought.


Subject(s)
Chiroptera/virology , Recombination, Genetic , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Amino Acid Sequence , Animals , China , Genome, Viral , Phylogeny , SARS-CoV-2/classification , Sequence Alignment , Viral Proteins/genetics
15.
Science and Technology for the Built Environment ; : 1-16, 2021.
Article in English | Taylor & Francis | ID: covidwho-1324553
16.
World J Gastroenterol ; 27(24): 3502-3515, 2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1298185

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by infection of the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with typical respiratory symptoms. SARS-CoV-2 invades not only the respiratory system, but also other organs expressing the cell surface receptor angiotensin converting enzyme 2. In particular, the digestive system is a susceptible target of SARS-CoV-2. Gastrointestinal symptoms of COVID-19 include anorexia, nausea, vomiting, diarrhea, abdominal pain, and liver damage. Patients with digestive damage have a greater chance of progressing to severe or critical illness, a poorer prognosis, and a higher risk of death. This paper aims to summarize the digestive system symptoms of COVID-19 and discuss fecal-oral contagion of SARS-CoV-2. It also describes the characteristics of inflammatory bowel disease patients with SARS-CoV-2 infection and discusses precautions for preventing SARS-CoV-2 infection during gastrointestinal endoscopy procedures. Improved attention to digestive system abnormalities and gastrointestinal symptoms of COVID-19 patients may aid health care providers in the process of clinical diagnosis, treatment, and epidemic prevention and control.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Liver Diseases , Digestive System , Humans , SARS-CoV-2
17.
Front Immunol ; 12: 691879, 2021.
Article in English | MEDLINE | ID: covidwho-1282387

ABSTRACT

Increasing human Adenovirus (HAdV) infections complicated with acute respiratory distress syndrome (ARDS) even fatal outcome were reported in immunocompetent adolescent and adult patients. Here, we characterized the cytokine/chemokine expression profiles of immunocompetent patients complicated with ARDS during HAdV infection and identified biomarkers for disease severity/progression. Forty-eight cytokines/chemokines in the plasma samples from 19 HAdV-infected immunocompetent adolescent and adult patients (ten complicated with ARDS) were measured and analyzed in combination with clinical indices. Immunocompetent patients with ARDS caused by severe acute respiratory disease coronavirus (SARS-CoV)-2, 2009 pandemic H1N1 (panH1N1) or bacteria were included for comparative analyses. Similar indices of disease course/progression were found in immunocompetent patients with ARDS caused by HAdV, SARS-CoV-2 or panH1N infections, whereas the HAdV-infected group showed a higher prevalence of viremia, as well as increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK). Expression levels of 33 cytokines/chemokines were increased significantly in HAdV-infected patients with ARDS compared with that in healthy controls, and many of them were also significantly higher than those in SARS-CoV-2-infected and panH1N1-infected patients. Expression of interferon (IFN)-γ, interleukin (IL)-1ß, hepatocyte growth factor (HGF), monokine induced by IFN-γ (MIG), IL-6, macrophage-colony stimulating factor (M-CSF), IL-10, IL-1α and IL-2Ra was significantly higher in HAdV-infected patients with ARDS than that in those without ARDS, and negatively associated with the ratio of the partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO2/FiO2). Analyses of the receiver operating characteristic curve (ROC) showed that expression of IL-10, M-CSF, MIG, HGF, IL-1ß, IFN-γ and IL-2Ra could predict the progression of HAdV infection, with the highest area under the curve (AUC) of 0.944 obtained for IL-10. Of note, the AUC value for the combination of IL-10, IFN-γ, and M-CSF reached 1. In conclusion, the "cytokine storm" occurred during HAdV infection in immunocompetent patients, and expression of IL-10, M-CSF, MIG, HGF, IL-1ß, IFN-γ and IL-2Ra was closely associated with disease severity and could predict disease progression.


Subject(s)
Adenovirus Infections, Human/blood , Cytokines/blood , Respiratory Distress Syndrome/blood , Adenovirus Infections, Human/complications , Adenovirus Infections, Human/pathology , Adenoviruses, Human , Adolescent , Adult , Bacteria , Bacterial Infections/blood , Bacterial Infections/complications , Bacterial Infections/pathology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Disease Progression , Female , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/blood , Influenza, Human/complications , Influenza, Human/pathology , Male , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , Severity of Illness Index , Viremia/blood , Viremia/complications , Viremia/pathology , Young Adult
18.
Front Med (Lausanne) ; 8: 620727, 2021.
Article in English | MEDLINE | ID: covidwho-1241175

ABSTRACT

Background and Objectives: Although the pathogenesis and treatment of coronavirus disease 2019 (COVID-19) have been gradually revealed, the risk for re-emergence of coronavirus nucleic acids in recovered patients remains poorly understood. Hence, this study evaluated the risk predictors associated with re-positivity for virus nucleic acid. Methods: Between February 1 and March 20, 2020, we retrospectively reviewed the clinical epidemiological data of 129 COVID-19 patients who were treated at Zhongxiang People's Hospital of Hubei Province in China. Subsequently, a risk prediction model for the re-positivity of virus nucleic acid was developed, and a receiver operating characteristic (ROC) curve was drawn for further validation. Results: In this study, the rate of re-positivity for virus nucleic acid was 17.8% (23/129) where all re-positivity cases were asymptomatic. The median time interval from discharge to nucleic acid re-positivity to discharge after being cured again was 11.5 days (range: 7-23 days). Multivariate logistic regression analysis showed that leukocytopenia [odds ratio (OR) 7.316, 95% confidence interval (CI) 2.319-23.080, p = 0.001], prealbumin < 150 mg/L (OR 4.199, 95% CI 1.461-12.071, p = 0.008), and hyperpyrexia (body temperature >39°C, OR 4.643, 95% CI 1.426-15.117, p = 0.011) were independent risk factors associated with re-positivity. The area under the ROC curve was 0.815 (95% CI, 0.729-0.902). Conclusion: COVID-19 patients with leukocytopenia, low prealbumin level, and hyperpyrexia are more likely to test positive for virus nucleic acid after discharge. Timely and effective treatment and appropriate extension of hospital stays and quarantine periods may be feasible strategies for managing such patients.

19.
World J Clin Cases ; 9(13): 2994-3007, 2021 May 06.
Article in English | MEDLINE | ID: covidwho-1222306

ABSTRACT

BACKGROUND: The widespread coronavirus disease 2019 (COVID-19) has led to high morbidity and mortality. Therefore, early risk identification of critically ill patients remains crucial. AIM: To develop predictive rules at the time of admission to identify COVID-19 patients who might require intensive care unit (ICU) care. METHODS: This retrospective study included a total of 361 patients with confirmed COVID-19 by reverse transcription-polymerase chain reaction between January 19, 2020, and March 14, 2020 in Shenzhen Third People's Hospital. Multivariate logistic regression was applied to develop the predictive model. The performance of the predictive model was externally validated and evaluated based on a dataset involving 126 patients from the Wuhan Asia General Hospital between December 2019 and March 2020, by area under the receiver operating curve (AUROC), goodness-of-fit and the performance matrix including the sensitivity, specificity, and precision. A nomogram was also used to visualize the model. RESULTS: Among the patients in the derivation and validation datasets, 38 and 9 participants (10.5% and 2.54%, respectively) developed severe COVID-19, respectively. In univariate analysis, 21 parameters such as age, sex (male), smoker, body mass index (BMI), time from onset to admission (> 5 d), asthenia, dry cough, expectoration, shortness of breath, asthenia, and Rox index < 18 (pulse oxygen saturation, SpO2)/(FiO2 × respiratory rate, RR) showed positive correlations with severe COVID-19. In multivariate logistic regression analysis, only six parameters including BMI [odds ratio (OR) 3.939; 95% confidence interval (CI): 1.409-11.015; P = 0.009], time from onset to admission (≥ 5 d) (OR 7.107; 95%CI: 1.449-34.849; P = 0.016), fever (OR 6.794; 95%CI: 1.401-32.951; P = 0.017), Charlson index (OR 2.917; 95%CI: 1.279-6.654; P = 0.011), PaO2/FiO2 ratio (OR 17.570; 95%CI: 1.117-276.383; P = 0.041), and neutrophil/lymphocyte ratio (OR 3.574; 95%CI: 1.048-12.191; P = 0.042) were found to be independent predictors of COVID-19. These factors were found to be significant risk factors for severe patients confirmed with COVID-19. The AUROC was 0.941 (95%CI: 0.901-0.981) and 0.936 (95%CI: 0.886-0.987) in both datasets. The calibration properties were good. CONCLUSION: The proposed predictive model had great potential in severity prediction of COVID-19 in the ICU. It assisted the ICU clinicians in making timely decisions for the target population.

20.
J Clin Microbiol ; 59(8): e0007921, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1218187

ABSTRACT

While China experienced a peak and decline in coronavirus disease 2019 (COVID-19) cases at the start of 2020, regional outbreaks continuously emerged in subsequent months. Resurgences of COVID-19 have also been observed in many other countries. In Guangzhou, China, a small outbreak, involving less than 100 residents, emerged in March and April 2020, and comprehensive and near-real-time genomic surveillance of SARS-CoV-2 was conducted. When the numbers of confirmed cases among overseas travelers increased, public health measures were enhanced by shifting from self-quarantine to central quarantine and SARS-CoV-2 testing for all overseas travelers. In an analysis of 109 imported cases, we found diverse viral variants distributed in the global viral phylogeny, which were frequently shared within households but not among passengers on the same flight. In contrast to the viral diversity of imported cases, local transmission was predominately attributed to two specific variants imported from Africa, including local cases that reported no direct or indirect contact with imported cases. The introduction events of the virus were identified or deduced before the enhanced measures were taken. These results show the interventions were effective in containing the spread of SARS-CoV-2, and they rule out the possibility of cryptic transmission of viral variants from the first wave in January and February 2020. Our study provides evidence and emphasizes the importance of controls for overseas travelers in the context of the pandemic and exemplifies how viral genomic data can facilitate COVID-19 surveillance and inform public health mitigation strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Africa , COVID-19 Testing , China/epidemiology , Genomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...